Ways to Remove Leaves of a Tree - Google Top Interview Questions
Problem Statement :
You are given a binary tree root. In one operation you can delete one leaf node in the tree. Return the number of different ways there are to delete the whole tree. Constraints 0 ≤ n ≤ 100,000 Example 1 Input Visualize root = [1, [2, null, null], [3, [4, null, null], null]] Output 3 Explanation The three ways to delete are [2, 4, 3, 1] [4, 2, 3, 1] [4, 3, 2, 1] Solved 92 Attempted 127
Solution :
Solution in Java :
import java.util.*;
/**
* public class Tree {
* int val;
* Tree left;
* Tree right;
* }
*/
class Solution {
static long[][] rd = new long[100001][101];
static final int MODE = 1000000007;
static {
for (int i = 0; i < rd.length; ++i) {
rd[i][0] = 1;
for (int j = 1; j < i && j < rd[0].length; ++j) {
rd[i][j] = (rd[i - 1][j - 1] + rd[i - 1][j]) % MODE;
}
if (i < rd[0].length)
rd[i][i] = 1;
}
}
public int solve(Tree root) {
int[] res = todo(root);
return res[0];
}
private int[] todo(Tree root) {
if (root == null)
return new int[] {1, 0};
int[] l = todo(root.left), r = todo(root.right);
long t;
if (l[1] <= r[1]) {
t = rd[l[1] + r[1]][l[1]];
} else {
t = rd[l[1] + r[1]][r[1]];
}
t *= l[0] * r[0];
l[0] = (int) (t % MODE);
l[1] += r[1] + 1;
return l;
}
}
Solution in Python :
class Solution:
def solve(self, root):
def rec(root): # return (size, number of ways) for current subtree
if root is None: # Root is null
return (0, 1)
leftsize, leftdp = rec(root.left)
rightsize, rightdp = rec(root.right)
return (
leftsize + rightsize + 1,
comb(leftsize + rightsize, leftsize) * leftdp * rightdp,
)
return rec(root)[1]
themast3r
95
Big N
6 months ago
Came up with an exact solution lol. Was thinking it's a elegant solution, so, I should post XD
class Solution:
def solve(self, root):
def helper(root):
if not root:
return [0, 1]
leftSize, leftWays, rightSize, rightWays = helper(root.left) + helper(root.right)
return [ leftSize + rightSize + 1, leftWays * rightWays * math.comb(leftSize + rightSize, leftSize) ]
return helper(root).pop()
```
View More Similar Problems
Insert a Node at the Tail of a Linked List
You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink
View Solution →Insert a Node at the head of a Linked List
Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below
View Solution →Insert a node at a specific position in a linked list
Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e
View Solution →Delete a Node
Delete the node at a given position in a linked list and return a reference to the head node. The head is at position 0. The list may be empty after you delete the node. In that case, return a null value. Example: list=0->1->2->3 position=2 After removing the node at position 2, list'= 0->1->-3. Function Description: Complete the deleteNode function in the editor below. deleteNo
View Solution →Print in Reverse
Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing
View Solution →Reverse a linked list
Given the pointer to the head node of a linked list, change the next pointers of the nodes so that their order is reversed. The head pointer given may be null meaning that the initial list is empty. Example: head references the list 1->2->3->Null. Manipulate the next pointers of each node in place and return head, now referencing the head of the list 3->2->1->Null. Function Descriptio
View Solution →