Lazy White Falcon


Problem Statement :


White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques?

There are 2 types of query operations that can be performed on a tree:

1 u x: Assign x as the value of node u.
2 u v: Print the sum of the node values in the unique path from node u to node v.
Given a tree with N nodes where each node's value is initially 0, execute Q queries.

Input Format

The first line contains 2 space-separated integers, N and Q, respectively.
The N-1 subsequent lines each contain 2 space-separated integers describing an undirected edge in the tree.
Each of the Q subsequent lines contains a query you must execute.

Constraints

1  <=  N, Q  <=  10^5
1  <=   x  <=   1000

It is guaranteed that the input describes a connected tree with N nodes.
Nodes are enumerated with 0-based indexing.

Output Format

For each type-2 query, print its integer result on a new line.



Solution :



title-img


                            Solution in C :

In    C++  :







#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100010;
const int LG_N = 20;

vector<int> adj[N];
int n, q;

int tree[2*N];
vector<int> euler;
int first[N], last[N];

int H[N], P[N][LG_N];
int val[N];

void dfs(int u, int p, int h) {
    H[u] = h;
    P[u][0] = p;
    for(int i = 1;i < LG_N;i++) {
        P[u][i] = P[P[u][i-1]][i-1];
    }
    first[u] = euler.size();
    euler.push_back(u);
    for(int v : adj[u]) {
        if(v == p) {
            continue;
        }
        dfs(v, u, h+1);
    }
    last[u] = euler.size();
    euler.push_back(u);
}
int lca(int u, int v) {
    if(H[u] < H[v]) swap(u, v);
    for(int i = LG_N-1;i >= 0;i--) {
        if(H[P[u][i]] >= H[v]) {
            u = P[u][i];
        }    
    }
    if(u == v) {
        return u;
    }
    for(int i = LG_N-1;i >= 0;i--) {
        if(P[u][i] != P[v][i]) {
            u = P[u][i];
            v = P[v][i];
        }
    }
    return P[u][0];
}
void update(int idx, int val) {
    while(idx < euler.size()) {
        tree[idx] += val;
        idx += idx & (-idx);
    }
}
int query(int idx) {
    int ans = 0;
    while(idx > 0) {
        ans += tree[idx];
        idx -= idx & (-idx);
    }
    return ans;
}
int main() {

    ios::sync_with_stdio(false);
    cin >> n >> q;
    for(int i = 0;i < n-1;i++) {
        int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    euler.resize(1, 0);
    dfs(0, 0, 0);
   
    for(int i = 0;i < q;i++) {
        int type;
        cin >> type;
        if(type == 1) {
            int u, x;
            cin >> u >> x;
            update(first[u], x - val[u]);
            update(last[u],  val[u] - x);
            val[u] = x;
        }else {
            int u, v;
            cin >> u >> v;
            int l = lca(u, v);
            int ans = query(first[u]) + query(first[v]);
            ans = ans - 2 * query(first[l]) + val[l];
            cout << ans << "\n";
        }
    }
    return 0;
}










In   Java :







import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

class TreeNode implements Comparable<TreeNode> {
int index;
int value;
int level = -1;    //0 is root.
Set<TreeNode> linkedNodes, children;
TreeNode parent;
BranchContainer branch;

TreeNode(int i) {
index = i;
linkedNodes = new HashSet<>();
children = new HashSet<TreeNode>();
branch = new BranchContainer();
}

void updateValue(int v) {
int diff = v - value;
value = v;
branch.sum += diff;
}

@Override
public String toString() {
return "i=" + index + " L=" + level;
}

@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + index;
return result;
}

@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
TreeNode other = (TreeNode) obj;
return index == other.index;
}

@Override
public int compareTo(TreeNode o) {
return index - o.index;
}
}

class BranchContainer {
ArrayList<TreeNode> list = new ArrayList<>();
HashSet<TreeNode> set = new HashSet<>();
int sum = 0;
boolean isTrunk = false;
}

public class Solution {
TreeNode[] nodes;
int nNodes, nQueries, treeHeight;
TreeNode root;

int getSum(final int index1, final int index2) {
final List<List<TreeNode>> path = 
findPath(nodes[index1], nodes[index2]);
int ret = 0;
for (List<TreeNode> list : path) {
if (list.isEmpty()) {
continue;
}

final int segSize = list.size();
final TreeNode head = list.get(0);
final int branchSize = head.branch.list.size();
if (branchSize>2*segSize) {
for (TreeNode node : list) {
ret += node.value;
}
}
else {
final TreeNode leaf = head.branch.list.get(0),
tail = list.get(segSize-1);
final List<TreeNode> list1 = 
leaf.branch.list.subList(0, leaf.level-head.level);
final List<TreeNode> list2 =
 leaf.branch.list.subList(leaf.level-tail.level+1,
 branchSize);
int sum = 0;
for (TreeNode node : list1) {
sum += node.value;
}
for (TreeNode node : list2) {
sum += node.value;
}

if (!head.branch.isTrunk) {
sum -= head.branch.list.get(branchSize-1).value; 
}

ret += leaf.branch.sum - sum;
}
}

return ret;
}

List<List<TreeNode>> findPath(final TreeNode node1,
 final TreeNode node2) {
List<List<TreeNode>> ret =
 new LinkedList<>();

if (node1.branch.isTrunk || 
node1.branch.list.get(0).level==0) {
if (!findPathFixOne(node1, node2, ret)) {
System.err.println("1 Cannot find path between " 
+ node1.toString() + " and " + node2.toString());
}
return ret;
}
else if (node2.branch.isTrunk ||
 node2.branch.list.get(0).level==0) {
if (!findPathFixOne(node2, node1, ret)) {
System.err.println("2 Cannot find path between " 
+ node2.toString() + " and " + node1.toString());
}
return ret;
}

int branches = countBrancheDist(node1, node2);
TreeNode tmp = null;
if (branches<0) {
branches = countBrancheDist(node2, node1);
if (branches<0) {
TreeNode n1 = advanceBranch(node1, 1, ret);
TreeNode n2 = advanceBranch(node2, 1, ret);
List<List<TreeNode>> tmpPath = findPath(n1, n2);
ret.addAll(tmpPath);
}
else if (branches==0) {
addSameBranch(node1, node2, ret);
}
else {
tmp = advanceBranch(node1, branches, ret);
if (!findPathFixOne(node2, tmp, ret)) {
System.err.println("3 Cannot find path between "
 + node1.toString() + " and " + tmp.toString());
}
}
}
else if (branches==0) {
addSameBranch(node1, node2, ret);
}
else {
tmp = advanceBranch(node2, branches, ret);
if (!findPathFixOne(node1, tmp, ret)) {
System.err.println("4 Cannot find path between "
 + node2.toString() + " and " + tmp.toString());
}
}

return ret;
}

int countBrancheDist(final TreeNode fixed,
 final TreeNode node) {
int ret = 0;
boolean found = fixed.branch.set.contains(node);
if (found) {
return ret;
}

TreeNode end = 
node.branch.list.get(node.branch.list.size()-1);
while (end.level>0) {
++ret;
if (fixed.branch.set.contains(end)) {
return ret;
}
end = end.branch.list.get(end.branch.list.size()-1);
}

if (fixed.branch.set.contains(end)) {
return ++ret;
}
else {
return -1;
}
}

TreeNode advanceBranch(final TreeNode node,
 final int n, List<List<TreeNode>> path) {
TreeNode ret = node;
for (int i = 0; i < n; ++i) {
int size = ret.branch.list.size()-1;
path.add(ret.branch.list.subList(ret.branch.list.get(0).
level-ret.level, size));
ret = ret.branch.list.get(size);
}

return ret;
}

boolean findPathFixOne(final TreeNode fixed, 
TreeNode node,
List<List<TreeNode>> path) {
while (node.level>0 && 
!fixed.branch.set.contains(node)) {
final int end = node.branch.list.size() - 1;
path.add(node.branch.list.subList(node.branch.
list.get(0).level - node.level, end));
node = node.branch.list.get(end);
}

if(!fixed.branch.set.contains(node)) {
return false;
}

addSameBranch(fixed, node, path);

return true;
}

void addSameBranch(final TreeNode node1, 
final TreeNode node2, List<List<TreeNode>> path) {
int leafLevel = node1.branch.list.get(0).level;
int level1 = node1.level,
level2 = node2.level;
if (level1<level2) {
int tmpI = level1;
level1 = level2;
level2 = tmpI;
}

path.add(node1.branch.list.subList(leafLevel-level1,
 leafLevel-level2+1));
}

void organizeTree() {
root = null;
int maxLinks = 0;
for (int i = 0; i < nNodes; ++i) {
final TreeNode node = nodes[i];
final int links = node.linkedNodes.size(); 
if (links>maxLinks) {
maxLinks = links;
root = node;
}
}

setChildren();
enumerateBranches();

return;
}

void setChildren() {
int level = 0;
root.level = level;
Map<TreeNode, Set<TreeNode>> pcMap = 
new HashMap<>();
pcMap.put(root, root.linkedNodes);
while (!pcMap.isEmpty()) {
Map<TreeNode, Set<TreeNode>> newMap = 
new HashMap<>();
for (Map.Entry<TreeNode,
 Set<TreeNode>> entry : pcMap.entrySet()) {
final TreeNode parent = entry.getKey();
final Set<TreeNode> list = entry.getValue();
parent.level = level;
parent.children.addAll(list);
if (parent.parent!=null) {
parent.children.remove(parent.parent);
}

for (TreeNode node : parent.children) {
node.parent = parent;
newMap.put(node, node.linkedNodes);
}
}

++level;
pcMap = newMap;
}

treeHeight = level;
}

void enumerateBranches() {
boolean foundTrunk = false;
for (int i = 0; i < nNodes; ++i) {
final TreeNode node = nodes[i];
if (!node.children.isEmpty()) {
continue;
}

node.branch.list.add(node);
node.branch.set.add(node);
TreeNode tmpNode = node.parent;
while (tmpNode!=null) {
node.branch.list.add(tmpNode);
node.branch.set.add(tmpNode);
if (tmpNode.branch.list.isEmpty()) {
tmpNode.branch = node.branch;
tmpNode = tmpNode.parent;
}
else {
break;
}
}

if (!foundTrunk && tmpNode==null) {
foundTrunk = true;
node.branch.isTrunk = true;
}
}

return;
}




public static void main(String[] args) {
try {
long t1 = System.currentTimeMillis();

Solution falcon = new Solution();

BufferedReader br = 
new BufferedReader(new InputStreamReader(System.in));
String line = br.readLine();
int index1 = 0, 
index2 = line.indexOf(' ', index1);
falcon.nNodes =
 Integer.parseInt(line.substring(index1, index2));
index1 = index2+1;
index2 = line.length();
falcon.nQueries = 
Integer.parseInt(line.substring(index1, index2));

falcon.nodes = new TreeNode[falcon.nNodes];
PrintWriter out = 
new PrintWriter(new BufferedWriter(
    new OutputStreamWriter(new FileOutputStream(
java.io.FileDescriptor.out), "UTF-8"), 512));

for (int i = 0; i < falcon.nNodes-1; ++i) {
//Read input.
line = br.readLine();
index1 = 0;
index2 = line.indexOf(' ', index1);
final int n1 = Integer.parseInt(
    line.substring(index1, index2));
index1 = index2+1;
index2 = line.length();
final int n2 = Integer.parseInt(
    line.substring(index1, index2));

TreeNode node1, node2;

if (falcon.nodes[n1]!=null) {
node1 = falcon.nodes[n1];
}
else {
node1 = new TreeNode(n1);
falcon.nodes[n1] = node1;
}

if (falcon.nodes[n2]!=null) {
node2 = falcon.nodes[n2];
}
else {
node2 = new TreeNode(n2);
falcon.nodes[n2] = node2;
}

node1.linkedNodes.add(node2);
node2.linkedNodes.add(node1);
}

falcon.organizeTree();

for (int i = 0; i < falcon.nQueries; ++i) 
{
line = br.readLine();
index1 = 0;
index2 = line.indexOf(' ', index1);
final int q = Integer.parseInt(
    line.substring(index1, index2));
index1 = index2+1;
index2 = line.indexOf(' ', index1);
final Integer u = new Integer(
    line.substring(index1, index2));
index1 = index2+1;
index2 = line.length();
final Integer v = new Integer(
    line.substring(index1, index2));

switch(q) {
case 1: falcon.nodes[u].updateValue(v);
        break;
case 2:     
out.println(falcon.getSum(u, v));
       break;
default:    System.err.println("Invalid query " + q);
}
}
out.flush();


}
catch (Exception e) {
e.printStackTrace( System.err );
}
}            
}








In   C   :







#include <stdio.h>
#include <stdlib.h>
typedef struct _lnode{
int x;
int w;
struct _lnode *next;
} lnode;
typedef struct _tree{
int sum;
} tree;
void insert_edge(int x,int y,int w);
void dfs0(int u);
void dfs1(int u,int c);
void preprocess();
int lca(int a,int b);
int sum(int v,int tl,
int tr,int l,int r,tree *t);
void update(int v,int tl,
int tr,int pos,int new_val,tree *t);
int min(int x,int y);
int max(int x,int y);
int solve(int x,int ancestor);
int N,cn,level[100000],DP[18][100000],
subtree_size[100000],special[100000],
node_chain[100000],node_idx[100000],
chain_head[100000],chain_len[100000]={0};
lnode *table[100000]={0};
tree *chain[100000];

int main(){
int Q,x,y,i;
scanf("%d%d",&N,&Q);
for(i=0;i<N-1;i++){
scanf("%d%d",&x,&y);
insert_edge(x,y,1);
}
preprocess();
while(Q--){
scanf("%d",&x);
switch(x){
case 1:
scanf("%d%d",&x,&y);
update(1,0,chain_len[node_chain[x]]
-1,node_idx[x],y,chain[node_chain[x]]);
break;
default:
scanf("%d%d",&x,&y);
i=lca(x,y);
printf("%d\n",
solve(x,i)+solve(y,i)-
sum(1,0,chain_len[node_chain[i]]
-1,node_idx[i],node_idx[i],chain[node_chain[i]]));
}
}
return 0;
}
void insert_edge(int x,int y,int w){
lnode *t=malloc(sizeof(lnode));
t->x=y;
t->w=w;
t->next=table[x];
table[x]=t;
t=malloc(sizeof(lnode));
t->x=x;
t->w=w;
t->next=table[y];
table[y]=t;
return;
}
void dfs0(int u){
lnode *x;
subtree_size[u]=1;
special[u]=-1;
for(x=table[u];x;x=x->next)
if(x->x!=DP[0][u]){
DP[0][x->x]=u;
level[x->x]=level[u]+1;
dfs0(x->x);
subtree_size[u]+=subtree_size[x->x];
if(special[u]==-1 || 
subtree_size[x->x]>subtree_size[special[u]])
special[u]=x->x;
}
return;
}
void dfs1(int u,int c){
lnode *x;
node_chain[u]=c;
node_idx[u]=chain_len[c]++;
for(x=table[u];x;x=x->next)
if(x->x!=DP[0][u])
if(x->x==special[u])
dfs1(x->x,c);
else{
chain_head[cn]=x->x;
dfs1(x->x,cn++);
}
return;
}
void preprocess(){
int i,j;
level[0]=0;
DP[0][0]=0;
dfs0(0);
for(i=1;i<18;i++)
for(j=0;j<N;j++)
DP[i][j] = DP[i-1][DP[i-1][j]];
cn=1;
chain_head[0]=0;
dfs1(0,0);
for(i=0;i<cn;i++)
chain[i]=(tree*)malloc(
    4*chain_len[i]*sizeof(tree));
for(i=0;i<N;i++)
update(1,0,chain_len[node_chain[i]]-1,
node_idx[i],0,chain[node_chain[i]]);
return;
}
int lca(int a,int b){
int i;
if(level[a]>level[b]){
i=a;
a=b;
b=i;
}
int d = level[b]-level[a];
for(i=0;i<18;i++)
if(d&(1<<i))
b=DP[i][b];
if(a==b)return a;
for(i=17;i>=0;i--)
if(DP[i][a]!=DP[i][b])
a=DP[i][a],b=DP[i][b];
return DP[0][a];
}
int sum(int v,int tl,int tr,int l,
int r,tree *t){
if(l>r)
return 0;
if(l==tl && r==tr)
return t[v].sum;
int tm=(tl+tr)/2;
return sum(v*2,tl,tm,l,min(r,tm),t)+
sum(v*2+1,tm+1,tr,max(l,tm+1),r,t);
}
void update(int v,int tl,int tr,
int pos,int new_val,tree *t){
if(tl==tr)
t[v].sum=new_val;
else{
int tm=(tl+tr)/2;
if(pos<=tm)
update(v*2,tl,tm,pos,new_val,t);
else
update(v*2+1,tm+1,tr,pos,new_val,t);
t[v].sum=t[v*2].sum+t[v*2+1].sum;
}
}
int min(int x,int y){
return (x<y)?x:y;
}
int max(int x,int y){
return (x>y)?x:y;
}
int solve(int x,int ancestor){
int ans=0;
while(node_chain[x]!=node_chain[ancestor]){
ans+=sum(1,0,chain_len[node_chain[x]]-1,
0,node_idx[x],chain[node_chain[x]]);
x=DP[0][chain_head[node_chain[x]]];
}
ans+=sum(1,0,chain_len[node_chain[x]]-1,
node_idx[ancestor],node_idx[x],
chain[node_chain[x]]);
return ans;
}









In   Python3  :






class heavy_light_node:
   def __init__(self, size):
      self.parent = None
      self.pos = -1
      self.weight = [0] * size
      self.fenwick = [0] * size
   def set_weight(self, i, x):
      d = x - self.weight[i]
      self.weight[i] = x
      N = len(self.weight)
      while i < N:
         self.fenwick[i] += d
         i |= i + 1
   def sum_weight(self, i):
      if i < 0: return 0
      x = self.fenwick[i]
      i &= i + 1
      while i:
         x += self.fenwick[i-1]
         i &= i - 1
      return x
def build_tree(i, edges, location):
   children = []
   members = [i]
   ed = edges[i]
   while ed:
      for j in range(1,len(ed)):
         child = build_tree(ed[j], edges, location)
         child.pos = len(members) - 1
         children.append(child)
      i = ed[0]
      members.append(i)
      ed = edges[i]
   node = heavy_light_node(len(members))
   for child in children:
      child.parent = node
   for j in range(len(members)):
      location[members[j]] = (node, j)
   return node
def read_tree(N):
   edges = [[] for i in range(N)]
   for i in range(N-1):
      x, y = map(int, input().split())
      edges[x].append(y)
      edges[y].append(x)
   size = [0] * N
   active = [0]
   while active:
      i = active[-1]
      if size[i] == 0:
         size[i] = 1
         for j in edges[i]:
            edges[j].remove(i)
            active.append(j)
      else:
         active.pop()
         edges[i].sort(key=lambda j: -size[j])
         size[i] = 1 + sum(size[j] for j in edges[i])
   location = [None] * N
   build_tree(0, edges, location)
   return location
def root_path(i, location):
   loc = location[i]
   path = [ loc ]
   loc = loc[0]
   while loc.parent != None:
      path.append((loc.parent, loc.pos))
      loc = loc.parent
   path.reverse()
   return path
def max_weight(x, y):
   px = root_path(x, location)
   py = root_path(y, location)
   m = 1
   stop = min(len(px), len(py))
   while m < stop and px[m][0] == py[m][0]: m += 1
   loc, a = px[m-1]
   b = py[m-1][1]
   if a > b: a, b = b, a
   w = loc.sum_weight(b) - loc.sum_weight(a-1)
   for j in range(m, len(px)):
      loc, i = px[j]
      w += loc.sum_weight(i)
   for j in range(m, len(py)):
      loc, i = py[j]
      w += loc.sum_weight(i)
   return w
N, Q = map(int, input().split())
location = read_tree(N)
for i in range(Q):
   t, x, y = map(int, input().split())
   if t == 1:
      loc, i = location[x]
      loc.set_weight(i, y)
   elif t == 2:
      print(max_weight(x, y))
                        








View More Similar Problems

Down to Zero II

You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.

View Solution →

Truck Tour

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr

View Solution →

Queries with Fixed Length

Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon

View Solution →

QHEAP1

This question is designed to help you get a better understanding of basic heap operations. You will be given queries of types: " 1 v " - Add an element to the heap. " 2 v " - Delete the element from the heap. "3" - Print the minimum of all the elements in the heap. NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct element

View Solution →

Jesse and Cookies

Jesse loves cookies. He wants the sweetness of all his cookies to be greater than value K. To do this, Jesse repeatedly mixes two cookies with the least sweetness. He creates a special combined cookie with: sweetness Least sweet cookie 2nd least sweet cookie). He repeats this procedure until all the cookies in his collection have a sweetness > = K. You are given Jesse's cookies. Print t

View Solution →

Find the Running Median

The median of a set of integers is the midpoint value of the data set for which an equal number of integers are less than and greater than the value. To find the median, you must first sort your set of integers in non-decreasing order, then: If your set contains an odd number of elements, the median is the middle element of the sorted sample. In the sorted set { 1, 2, 3 } , 2 is the median.

View Solution →