Lazy White Falcon
Problem Statement :
White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree with N nodes where each node's value is initially 0, execute Q queries. Input Format The first line contains 2 space-separated integers, N and Q, respectively. The N-1 subsequent lines each contain 2 space-separated integers describing an undirected edge in the tree. Each of the Q subsequent lines contains a query you must execute. Constraints 1 <= N, Q <= 10^5 1 <= x <= 1000 It is guaranteed that the input describes a connected tree with N nodes. Nodes are enumerated with 0-based indexing. Output Format For each type-2 query, print its integer result on a new line.
Solution :
Solution in C :
In C++ :
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
const int LG_N = 20;
vector<int> adj[N];
int n, q;
int tree[2*N];
vector<int> euler;
int first[N], last[N];
int H[N], P[N][LG_N];
int val[N];
void dfs(int u, int p, int h) {
H[u] = h;
P[u][0] = p;
for(int i = 1;i < LG_N;i++) {
P[u][i] = P[P[u][i-1]][i-1];
}
first[u] = euler.size();
euler.push_back(u);
for(int v : adj[u]) {
if(v == p) {
continue;
}
dfs(v, u, h+1);
}
last[u] = euler.size();
euler.push_back(u);
}
int lca(int u, int v) {
if(H[u] < H[v]) swap(u, v);
for(int i = LG_N-1;i >= 0;i--) {
if(H[P[u][i]] >= H[v]) {
u = P[u][i];
}
}
if(u == v) {
return u;
}
for(int i = LG_N-1;i >= 0;i--) {
if(P[u][i] != P[v][i]) {
u = P[u][i];
v = P[v][i];
}
}
return P[u][0];
}
void update(int idx, int val) {
while(idx < euler.size()) {
tree[idx] += val;
idx += idx & (-idx);
}
}
int query(int idx) {
int ans = 0;
while(idx > 0) {
ans += tree[idx];
idx -= idx & (-idx);
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> q;
for(int i = 0;i < n-1;i++) {
int u, v;
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
}
euler.resize(1, 0);
dfs(0, 0, 0);
for(int i = 0;i < q;i++) {
int type;
cin >> type;
if(type == 1) {
int u, x;
cin >> u >> x;
update(first[u], x - val[u]);
update(last[u], val[u] - x);
val[u] = x;
}else {
int u, v;
cin >> u >> v;
int l = lca(u, v);
int ans = query(first[u]) + query(first[v]);
ans = ans - 2 * query(first[l]) + val[l];
cout << ans << "\n";
}
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
class TreeNode implements Comparable<TreeNode> {
int index;
int value;
int level = -1; //0 is root.
Set<TreeNode> linkedNodes, children;
TreeNode parent;
BranchContainer branch;
TreeNode(int i) {
index = i;
linkedNodes = new HashSet<>();
children = new HashSet<TreeNode>();
branch = new BranchContainer();
}
void updateValue(int v) {
int diff = v - value;
value = v;
branch.sum += diff;
}
@Override
public String toString() {
return "i=" + index + " L=" + level;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + index;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
TreeNode other = (TreeNode) obj;
return index == other.index;
}
@Override
public int compareTo(TreeNode o) {
return index - o.index;
}
}
class BranchContainer {
ArrayList<TreeNode> list = new ArrayList<>();
HashSet<TreeNode> set = new HashSet<>();
int sum = 0;
boolean isTrunk = false;
}
public class Solution {
TreeNode[] nodes;
int nNodes, nQueries, treeHeight;
TreeNode root;
int getSum(final int index1, final int index2) {
final List<List<TreeNode>> path =
findPath(nodes[index1], nodes[index2]);
int ret = 0;
for (List<TreeNode> list : path) {
if (list.isEmpty()) {
continue;
}
final int segSize = list.size();
final TreeNode head = list.get(0);
final int branchSize = head.branch.list.size();
if (branchSize>2*segSize) {
for (TreeNode node : list) {
ret += node.value;
}
}
else {
final TreeNode leaf = head.branch.list.get(0),
tail = list.get(segSize-1);
final List<TreeNode> list1 =
leaf.branch.list.subList(0, leaf.level-head.level);
final List<TreeNode> list2 =
leaf.branch.list.subList(leaf.level-tail.level+1,
branchSize);
int sum = 0;
for (TreeNode node : list1) {
sum += node.value;
}
for (TreeNode node : list2) {
sum += node.value;
}
if (!head.branch.isTrunk) {
sum -= head.branch.list.get(branchSize-1).value;
}
ret += leaf.branch.sum - sum;
}
}
return ret;
}
List<List<TreeNode>> findPath(final TreeNode node1,
final TreeNode node2) {
List<List<TreeNode>> ret =
new LinkedList<>();
if (node1.branch.isTrunk ||
node1.branch.list.get(0).level==0) {
if (!findPathFixOne(node1, node2, ret)) {
System.err.println("1 Cannot find path between "
+ node1.toString() + " and " + node2.toString());
}
return ret;
}
else if (node2.branch.isTrunk ||
node2.branch.list.get(0).level==0) {
if (!findPathFixOne(node2, node1, ret)) {
System.err.println("2 Cannot find path between "
+ node2.toString() + " and " + node1.toString());
}
return ret;
}
int branches = countBrancheDist(node1, node2);
TreeNode tmp = null;
if (branches<0) {
branches = countBrancheDist(node2, node1);
if (branches<0) {
TreeNode n1 = advanceBranch(node1, 1, ret);
TreeNode n2 = advanceBranch(node2, 1, ret);
List<List<TreeNode>> tmpPath = findPath(n1, n2);
ret.addAll(tmpPath);
}
else if (branches==0) {
addSameBranch(node1, node2, ret);
}
else {
tmp = advanceBranch(node1, branches, ret);
if (!findPathFixOne(node2, tmp, ret)) {
System.err.println("3 Cannot find path between "
+ node1.toString() + " and " + tmp.toString());
}
}
}
else if (branches==0) {
addSameBranch(node1, node2, ret);
}
else {
tmp = advanceBranch(node2, branches, ret);
if (!findPathFixOne(node1, tmp, ret)) {
System.err.println("4 Cannot find path between "
+ node2.toString() + " and " + tmp.toString());
}
}
return ret;
}
int countBrancheDist(final TreeNode fixed,
final TreeNode node) {
int ret = 0;
boolean found = fixed.branch.set.contains(node);
if (found) {
return ret;
}
TreeNode end =
node.branch.list.get(node.branch.list.size()-1);
while (end.level>0) {
++ret;
if (fixed.branch.set.contains(end)) {
return ret;
}
end = end.branch.list.get(end.branch.list.size()-1);
}
if (fixed.branch.set.contains(end)) {
return ++ret;
}
else {
return -1;
}
}
TreeNode advanceBranch(final TreeNode node,
final int n, List<List<TreeNode>> path) {
TreeNode ret = node;
for (int i = 0; i < n; ++i) {
int size = ret.branch.list.size()-1;
path.add(ret.branch.list.subList(ret.branch.list.get(0).
level-ret.level, size));
ret = ret.branch.list.get(size);
}
return ret;
}
boolean findPathFixOne(final TreeNode fixed,
TreeNode node,
List<List<TreeNode>> path) {
while (node.level>0 &&
!fixed.branch.set.contains(node)) {
final int end = node.branch.list.size() - 1;
path.add(node.branch.list.subList(node.branch.
list.get(0).level - node.level, end));
node = node.branch.list.get(end);
}
if(!fixed.branch.set.contains(node)) {
return false;
}
addSameBranch(fixed, node, path);
return true;
}
void addSameBranch(final TreeNode node1,
final TreeNode node2, List<List<TreeNode>> path) {
int leafLevel = node1.branch.list.get(0).level;
int level1 = node1.level,
level2 = node2.level;
if (level1<level2) {
int tmpI = level1;
level1 = level2;
level2 = tmpI;
}
path.add(node1.branch.list.subList(leafLevel-level1,
leafLevel-level2+1));
}
void organizeTree() {
root = null;
int maxLinks = 0;
for (int i = 0; i < nNodes; ++i) {
final TreeNode node = nodes[i];
final int links = node.linkedNodes.size();
if (links>maxLinks) {
maxLinks = links;
root = node;
}
}
setChildren();
enumerateBranches();
return;
}
void setChildren() {
int level = 0;
root.level = level;
Map<TreeNode, Set<TreeNode>> pcMap =
new HashMap<>();
pcMap.put(root, root.linkedNodes);
while (!pcMap.isEmpty()) {
Map<TreeNode, Set<TreeNode>> newMap =
new HashMap<>();
for (Map.Entry<TreeNode,
Set<TreeNode>> entry : pcMap.entrySet()) {
final TreeNode parent = entry.getKey();
final Set<TreeNode> list = entry.getValue();
parent.level = level;
parent.children.addAll(list);
if (parent.parent!=null) {
parent.children.remove(parent.parent);
}
for (TreeNode node : parent.children) {
node.parent = parent;
newMap.put(node, node.linkedNodes);
}
}
++level;
pcMap = newMap;
}
treeHeight = level;
}
void enumerateBranches() {
boolean foundTrunk = false;
for (int i = 0; i < nNodes; ++i) {
final TreeNode node = nodes[i];
if (!node.children.isEmpty()) {
continue;
}
node.branch.list.add(node);
node.branch.set.add(node);
TreeNode tmpNode = node.parent;
while (tmpNode!=null) {
node.branch.list.add(tmpNode);
node.branch.set.add(tmpNode);
if (tmpNode.branch.list.isEmpty()) {
tmpNode.branch = node.branch;
tmpNode = tmpNode.parent;
}
else {
break;
}
}
if (!foundTrunk && tmpNode==null) {
foundTrunk = true;
node.branch.isTrunk = true;
}
}
return;
}
public static void main(String[] args) {
try {
long t1 = System.currentTimeMillis();
Solution falcon = new Solution();
BufferedReader br =
new BufferedReader(new InputStreamReader(System.in));
String line = br.readLine();
int index1 = 0,
index2 = line.indexOf(' ', index1);
falcon.nNodes =
Integer.parseInt(line.substring(index1, index2));
index1 = index2+1;
index2 = line.length();
falcon.nQueries =
Integer.parseInt(line.substring(index1, index2));
falcon.nodes = new TreeNode[falcon.nNodes];
PrintWriter out =
new PrintWriter(new BufferedWriter(
new OutputStreamWriter(new FileOutputStream(
java.io.FileDescriptor.out), "UTF-8"), 512));
for (int i = 0; i < falcon.nNodes-1; ++i) {
//Read input.
line = br.readLine();
index1 = 0;
index2 = line.indexOf(' ', index1);
final int n1 = Integer.parseInt(
line.substring(index1, index2));
index1 = index2+1;
index2 = line.length();
final int n2 = Integer.parseInt(
line.substring(index1, index2));
TreeNode node1, node2;
if (falcon.nodes[n1]!=null) {
node1 = falcon.nodes[n1];
}
else {
node1 = new TreeNode(n1);
falcon.nodes[n1] = node1;
}
if (falcon.nodes[n2]!=null) {
node2 = falcon.nodes[n2];
}
else {
node2 = new TreeNode(n2);
falcon.nodes[n2] = node2;
}
node1.linkedNodes.add(node2);
node2.linkedNodes.add(node1);
}
falcon.organizeTree();
for (int i = 0; i < falcon.nQueries; ++i)
{
line = br.readLine();
index1 = 0;
index2 = line.indexOf(' ', index1);
final int q = Integer.parseInt(
line.substring(index1, index2));
index1 = index2+1;
index2 = line.indexOf(' ', index1);
final Integer u = new Integer(
line.substring(index1, index2));
index1 = index2+1;
index2 = line.length();
final Integer v = new Integer(
line.substring(index1, index2));
switch(q) {
case 1: falcon.nodes[u].updateValue(v);
break;
case 2:
out.println(falcon.getSum(u, v));
break;
default: System.err.println("Invalid query " + q);
}
}
out.flush();
}
catch (Exception e) {
e.printStackTrace( System.err );
}
}
}
In C :
#include <stdio.h>
#include <stdlib.h>
typedef struct _lnode{
int x;
int w;
struct _lnode *next;
} lnode;
typedef struct _tree{
int sum;
} tree;
void insert_edge(int x,int y,int w);
void dfs0(int u);
void dfs1(int u,int c);
void preprocess();
int lca(int a,int b);
int sum(int v,int tl,
int tr,int l,int r,tree *t);
void update(int v,int tl,
int tr,int pos,int new_val,tree *t);
int min(int x,int y);
int max(int x,int y);
int solve(int x,int ancestor);
int N,cn,level[100000],DP[18][100000],
subtree_size[100000],special[100000],
node_chain[100000],node_idx[100000],
chain_head[100000],chain_len[100000]={0};
lnode *table[100000]={0};
tree *chain[100000];
int main(){
int Q,x,y,i;
scanf("%d%d",&N,&Q);
for(i=0;i<N-1;i++){
scanf("%d%d",&x,&y);
insert_edge(x,y,1);
}
preprocess();
while(Q--){
scanf("%d",&x);
switch(x){
case 1:
scanf("%d%d",&x,&y);
update(1,0,chain_len[node_chain[x]]
-1,node_idx[x],y,chain[node_chain[x]]);
break;
default:
scanf("%d%d",&x,&y);
i=lca(x,y);
printf("%d\n",
solve(x,i)+solve(y,i)-
sum(1,0,chain_len[node_chain[i]]
-1,node_idx[i],node_idx[i],chain[node_chain[i]]));
}
}
return 0;
}
void insert_edge(int x,int y,int w){
lnode *t=malloc(sizeof(lnode));
t->x=y;
t->w=w;
t->next=table[x];
table[x]=t;
t=malloc(sizeof(lnode));
t->x=x;
t->w=w;
t->next=table[y];
table[y]=t;
return;
}
void dfs0(int u){
lnode *x;
subtree_size[u]=1;
special[u]=-1;
for(x=table[u];x;x=x->next)
if(x->x!=DP[0][u]){
DP[0][x->x]=u;
level[x->x]=level[u]+1;
dfs0(x->x);
subtree_size[u]+=subtree_size[x->x];
if(special[u]==-1 ||
subtree_size[x->x]>subtree_size[special[u]])
special[u]=x->x;
}
return;
}
void dfs1(int u,int c){
lnode *x;
node_chain[u]=c;
node_idx[u]=chain_len[c]++;
for(x=table[u];x;x=x->next)
if(x->x!=DP[0][u])
if(x->x==special[u])
dfs1(x->x,c);
else{
chain_head[cn]=x->x;
dfs1(x->x,cn++);
}
return;
}
void preprocess(){
int i,j;
level[0]=0;
DP[0][0]=0;
dfs0(0);
for(i=1;i<18;i++)
for(j=0;j<N;j++)
DP[i][j] = DP[i-1][DP[i-1][j]];
cn=1;
chain_head[0]=0;
dfs1(0,0);
for(i=0;i<cn;i++)
chain[i]=(tree*)malloc(
4*chain_len[i]*sizeof(tree));
for(i=0;i<N;i++)
update(1,0,chain_len[node_chain[i]]-1,
node_idx[i],0,chain[node_chain[i]]);
return;
}
int lca(int a,int b){
int i;
if(level[a]>level[b]){
i=a;
a=b;
b=i;
}
int d = level[b]-level[a];
for(i=0;i<18;i++)
if(d&(1<<i))
b=DP[i][b];
if(a==b)return a;
for(i=17;i>=0;i--)
if(DP[i][a]!=DP[i][b])
a=DP[i][a],b=DP[i][b];
return DP[0][a];
}
int sum(int v,int tl,int tr,int l,
int r,tree *t){
if(l>r)
return 0;
if(l==tl && r==tr)
return t[v].sum;
int tm=(tl+tr)/2;
return sum(v*2,tl,tm,l,min(r,tm),t)+
sum(v*2+1,tm+1,tr,max(l,tm+1),r,t);
}
void update(int v,int tl,int tr,
int pos,int new_val,tree *t){
if(tl==tr)
t[v].sum=new_val;
else{
int tm=(tl+tr)/2;
if(pos<=tm)
update(v*2,tl,tm,pos,new_val,t);
else
update(v*2+1,tm+1,tr,pos,new_val,t);
t[v].sum=t[v*2].sum+t[v*2+1].sum;
}
}
int min(int x,int y){
return (x<y)?x:y;
}
int max(int x,int y){
return (x>y)?x:y;
}
int solve(int x,int ancestor){
int ans=0;
while(node_chain[x]!=node_chain[ancestor]){
ans+=sum(1,0,chain_len[node_chain[x]]-1,
0,node_idx[x],chain[node_chain[x]]);
x=DP[0][chain_head[node_chain[x]]];
}
ans+=sum(1,0,chain_len[node_chain[x]]-1,
node_idx[ancestor],node_idx[x],
chain[node_chain[x]]);
return ans;
}
In Python3 :
class heavy_light_node:
def __init__(self, size):
self.parent = None
self.pos = -1
self.weight = [0] * size
self.fenwick = [0] * size
def set_weight(self, i, x):
d = x - self.weight[i]
self.weight[i] = x
N = len(self.weight)
while i < N:
self.fenwick[i] += d
i |= i + 1
def sum_weight(self, i):
if i < 0: return 0
x = self.fenwick[i]
i &= i + 1
while i:
x += self.fenwick[i-1]
i &= i - 1
return x
def build_tree(i, edges, location):
children = []
members = [i]
ed = edges[i]
while ed:
for j in range(1,len(ed)):
child = build_tree(ed[j], edges, location)
child.pos = len(members) - 1
children.append(child)
i = ed[0]
members.append(i)
ed = edges[i]
node = heavy_light_node(len(members))
for child in children:
child.parent = node
for j in range(len(members)):
location[members[j]] = (node, j)
return node
def read_tree(N):
edges = [[] for i in range(N)]
for i in range(N-1):
x, y = map(int, input().split())
edges[x].append(y)
edges[y].append(x)
size = [0] * N
active = [0]
while active:
i = active[-1]
if size[i] == 0:
size[i] = 1
for j in edges[i]:
edges[j].remove(i)
active.append(j)
else:
active.pop()
edges[i].sort(key=lambda j: -size[j])
size[i] = 1 + sum(size[j] for j in edges[i])
location = [None] * N
build_tree(0, edges, location)
return location
def root_path(i, location):
loc = location[i]
path = [ loc ]
loc = loc[0]
while loc.parent != None:
path.append((loc.parent, loc.pos))
loc = loc.parent
path.reverse()
return path
def max_weight(x, y):
px = root_path(x, location)
py = root_path(y, location)
m = 1
stop = min(len(px), len(py))
while m < stop and px[m][0] == py[m][0]: m += 1
loc, a = px[m-1]
b = py[m-1][1]
if a > b: a, b = b, a
w = loc.sum_weight(b) - loc.sum_weight(a-1)
for j in range(m, len(px)):
loc, i = px[j]
w += loc.sum_weight(i)
for j in range(m, len(py)):
loc, i = py[j]
w += loc.sum_weight(i)
return w
N, Q = map(int, input().split())
location = read_tree(N)
for i in range(Q):
t, x, y = map(int, input().split())
if t == 1:
loc, i = location[x]
loc.set_weight(i, y)
elif t == 2:
print(max_weight(x, y))
View More Similar Problems
Balanced Forest
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a
View Solution →Jenny's Subtrees
Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .
View Solution →Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →Self Balancing Tree
An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ
View Solution →Array and simple queries
Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty
View Solution →