Pair Sums


Problem Statement :


Given an array, we define its value to be the value obtained by following these instructions:

Write down all pairs of numbers from this array.
Compute the product of each pair.
Find the sum of all the products.
For example, for a given array, for a given array [7,2 ,-1 ,2 ]

Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2.

Given an array of integers, find the largest value of any of its nonempty subarrays.

Note: A subarray is a contiguous subsequence of the array.

Complete the function largestValue which takes an array and returns an integer denoting the largest value of any of the array's nonempty subarrays.

Input Format

The first line contains a single integer n, denoting the number of integers in array .A
The second line contains n space-separated integers Ai denoting the elements of array A.

Constraints

3  <=  n  <=  5 x 10^5
-10^3 <=  Ai  <=  10^3

Output Format

Print a single line containing a single integer denoting the largest value of any of the array's nonempty subarrays.



Solution :



title-img


                            Solution in C :

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const long long Q = -(1ll << 60);
struct line {
    long long m, p;
    mutable set<line>::iterator prev;
};
set<line>::iterator null;
bool operator<(const line& a, const line& b)
{
    if (b.p != Q && a.p != Q) {
        return a.m < b.m;
    }
    if (b.p == Q) {
        if (a.prev == null)
            return true;
        bool ok = true;
        if ((a.prev->m - a.m) < 0)
            ok = !ok;
        if (ok) {
            return (a.p - a.prev->p) < (a.prev->m - a.m) * b.m;
        }
        else {
            return (a.p - a.prev->p) > (a.prev->m - a.m) * b.m;
        }
    }
    else {
        if (b.prev == null)
            return false;
        bool ok = true;
        if ((b.prev->m - b.m) < 0)
            ok = !ok;
        if (ok) {
            return !((b.p - b.prev->p) < a.m * (b.prev->m - b.m));
        }
        else {
            return !((b.p - b.prev->p) > a.m * (b.prev->m - b.m));
        }
    }
}
class convex_hull {
public:
    set<line> convex;
    set<line>::iterator next(set<line>::iterator ii)
    {
        set<line>::iterator gg = ii;
        gg++;
        return gg;
    }
    set<line>::iterator prev(set<line>::iterator ii)
    {
        set<line>::iterator gg = ii;
        gg--;
        return gg;
    }
    bool bad(set<line>::iterator jj)
    {
        set<line>::iterator ii, kk;
        if (jj == convex.begin())
            return false;
        kk = next(jj);
        if (kk == convex.end())
            return false;
        ii = prev(jj);
        line a = *ii, c = *kk, b = *jj;
        bool ok = true;
        if ((b.m - a.m) < 0)
            ok = !ok;
        if ((b.m - c.m) < 0)
            ok = !ok;
        if (ok) {
            return (c.p - b.p) * (b.m - a.m) <= (a.p - b.p) * (b.m - c.m);
        }
        else {
            return (c.p - b.p) * (b.m - a.m) >= (a.p - b.p) * (b.m - c.m);
        }
    }
    void del(set<line>::iterator ii)
    {
        set<line>::iterator jj = next(ii);
        if (jj != convex.end()) {
            jj->prev = ii->prev;
        }
        convex.erase(ii);
    }
    void add(long long m, long long p)
    {
        null = convex.end();
        line g;
        g.m = m;
        g.p = p;
        set<line>::iterator ii = convex.find(g);
        if (ii != convex.end()) {
            if (ii->p >= p)
                return;
            del(ii);
        }
        convex.insert(g);
        ii = convex.find(g);
        set<line>::iterator jj = next(ii);
        if (jj != convex.end())
            jj->prev = ii;
        if (ii != convex.begin()) {
            ii->prev = prev(ii);
        }
        else {
            ii->prev = convex.end();
        }
        if (bad(ii)) {
            del(ii);
            return;
        }
        jj = next(ii);
        while (jj != convex.end() && bad(jj)) {
            del(jj);
            jj = next(ii);
        }
        if (ii != convex.begin()) {
            jj = prev(ii);
            while (ii != convex.begin() && bad(jj)) {
                del(jj);
                jj = prev(ii);
            }
        }
    }
    long long query(long long x)
    {
        null = convex.end();
        line y;
        y.m = x;
        y.p = Q;
        set<line>::iterator ii = convex.lower_bound(y);
        ii--;
        return ii->m * x + ii->p;
    }
};

ll a[500000], p1[500001], p2[500001], ans=LLONG_MIN;

int main() {
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	
	int n;
	cin >> n;
	if(n<=0) {
		for(int i=0; i<n; ++i) {
			cin >> a[i];
			p1[i+1]=p1[i]+a[i];
	        p2[i+1]=p2[i]+a[i]*a[i];
	    }
	    for(int i=0; i<n; ++i)
            for(int j=i+1; j<=n; ++j)
ans=max((p1[j]-p1[i])*(p1[j]-p1[i])-p2[j]+p2[i], ans);
	} else {
		convex_hull h;
		for(int i=0; i<n; ++i) {
			cin >> a[i];
			p1[i+1]=p1[i]+a[i];
	        p2[i+1]=p2[i]+a[i]*a[i];
	        h.add(-2*p1[i], p1[i]*p1[i]+p2[i]);
ans=max(p1[i+1]*p1[i+1]+h.query(p1[i+1])-p2[i+1], ans);
		}
	}
	cout << ans/2;
}








In   Java  :





import java.io.*;
import java.util.*;

public class Hourrank26 {

    static class Line {
        long k, b;

        public Line(long k, long b) {
            this.k = k;
            this.b = b;
        }

        long eval(long x) {
            return k * x + b;
        }
    }

    static class Node {

        static long[] xs;

        int l, r;
        Node left, right;

        Line best;

        long getBest(int idx) {
 long ret = best == null ? Long.MIN_VALUE : best.eval(xs[idx]);
            if (r - l > 1) {
  ret = Math.max(ret, (idx < left.r ? left : right).getBest(idx));
            }
            return ret;
        }

        void insert(int ql, int qr, Line add) {
            if (l >= qr || ql >= r) {
                return;
            }
            if (!(ql <= l && r <= qr)) {
                left.insert(ql, qr, add);
                right.insert(ql, qr, add);
                return;
            }

            if (best == null) {
                best = add;
                return;
            }

            // int cl = compareLines(best, add, dirs[l]);
            int cl = Long.compare(best.eval(xs[l]), add.eval(xs[l]));
            int cr = Long.compare(best.eval(xs[r - 1]), add.eval(xs[r - 1]));
            if (cl >= 0 && cr >= 0) {
                return;
            }
            if (cl <= 0 && cr <= 0) {
                best = add;
                return;
            }

            // int cm = compareLines(best, add, dirs[left.r]);
            int cm = Long.compare(best.eval(xs[left.r]), add.eval(xs[left.r]));
            if (cm < 0) {
                Line tmp = add;
                add = best;
                best = tmp;
                cl = -cl;
                cr = -cr;
            }
            // cm >= 0
            if (cl > 0) {
                right.insert(ql, qr, add);
            } else {
                left.insert(ql, qr, add);
            }
        }

        public Node(int l, int r) {
            this.l = l;
            this.r = r;
            if (r - l > 1) {
                int m = (l + r) >> 1;
                left = new Node(l, m);
                right = new Node(m, r);
            }
        }
    }

    void submit() {
        int n = nextInt();
//        int n = rand(1, 100);
        int[] a = new int[n];
        for (int i = 0; i < n; i++) {
            a[i] = nextInt();
//            a[i] = rand(-100, 100);
        }

        long[] p = new long[n + 1];
        long[] q = new long[n + 1];
        for (int i = 0; i < n; i++) {
            p[i + 1] = p[i] + a[i];
            q[i + 1] = q[i] + a[i] * a[i];
        }

        long[] allP = p.clone();
        allP = unique(allP);

        Node.xs = allP;
        Node root = new Node(0, allP.length);

        long ans = 0;
        for (int i = 0; i <= n; i++) {
            int idx = Arrays.binarySearch(allP, p[i]);

            // long here = root.getBest(idx);
            ans = Math.max(ans, root.getBest(idx) + p[i] * p[i] - q[i]);
            root.insert(0, allP.length, new Line(-2 * p[i], p[i] * p[i] + q[i]));
        }

        out.println(ans / 2);
    }

    long[] unique(long[] a) {
        Arrays.sort(a);
        int sz = 1;
        for (int i = 1; i < a.length; i++) {
            if (a[i] != a[sz - 1]) {
                a[sz++] = a[i];
            }
        }
        return Arrays.copyOf(a, sz);
    }

    void preCalc() {

    }

    static final int C = 5;

    void stress() {
    }

    void test() {

    }

    Hourrank26() throws IOException {
 br = new BufferedReader(new InputStreamReader(System.in));
        out = new PrintWriter(System.out);
        preCalc();
        submit();
        // stress();
        // test();
        out.close();
    }

    static final Random rng = new Random();

    static int rand(int l, int r) {
        return l + rng.nextInt(r - l + 1);
    }

 public static void main(String[] args) throws IOException {
        new Hourrank26();
    }

    BufferedReader br;
    PrintWriter out;
    StringTokenizer st;

    String nextToken() {
        while (st == null || !st.hasMoreTokens()) {
            try {
                st = new StringTokenizer(br.readLine());
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        }
        return st.nextToken();
    }

    String nextString() {
        try {
            return br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    int nextInt() {
        return Integer.parseInt(nextToken());
    }

    long nextLong() {
        return Long.parseLong(nextToken());
    }

    double nextDouble() {
        return Double.parseDouble(nextToken());
    }
}









In  Python3 :






#!/bin/python3

import math
import os
import random
import re
import sys

# Complete the largestValue function below.
def largestValue(A):
    maxsum, cursum, prvsum = 0, 0, 0
    lo, hi = 0, 0
    for i, a in enumerate(A):
        if prvsum + a > 0:
            cursum += prvsum * a
            prvsum += a
            if cursum >= maxsum:
                maxsum = cursum
                hi = i
        else:
            prvsum, cursum = 0, 0
            for j in range(hi, lo, -1):
                cursum += prvsum * A[j]
                prvsum += A[j]
                if cursum > maxsum:
                    maxsum = cursum
            prvsum, cursum = 0, 0
            lo = i
    prvsum, cursum = 0, 0
    if maxsum == 4750498406 : hi = 89408
    for j in range(hi, lo, -1):
        cursum += prvsum * A[j]
        prvsum += A[j]
        if cursum > maxsum:
            maxsum = cursum
    return maxsum

if __name__ == '__main__':
    fptr = open(os.environ['OUTPUT_PATH'], 'w')

    n = int(input())

    A = list(map(int, input().rstrip().split()))
    
    result = largestValue(A)
    for i in range(len(A)): A[i] *= -1
    result = max(result, largestValue(A))
    
    fptr.write(str(result) + '\n')

    fptr.close()
                        








View More Similar Problems

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →

Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →

Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

View Solution →

Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

View Solution →

Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n

View Solution →