Pair Sums
Problem Statement :
Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest value of any of its nonempty subarrays. Note: A subarray is a contiguous subsequence of the array. Complete the function largestValue which takes an array and returns an integer denoting the largest value of any of the array's nonempty subarrays. Input Format The first line contains a single integer n, denoting the number of integers in array .A The second line contains n space-separated integers Ai denoting the elements of array A. Constraints 3 <= n <= 5 x 10^5 -10^3 <= Ai <= 10^3 Output Format Print a single line containing a single integer denoting the largest value of any of the array's nonempty subarrays.
Solution :
Solution in C :
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const long long Q = -(1ll << 60);
struct line {
long long m, p;
mutable set<line>::iterator prev;
};
set<line>::iterator null;
bool operator<(const line& a, const line& b)
{
if (b.p != Q && a.p != Q) {
return a.m < b.m;
}
if (b.p == Q) {
if (a.prev == null)
return true;
bool ok = true;
if ((a.prev->m - a.m) < 0)
ok = !ok;
if (ok) {
return (a.p - a.prev->p) < (a.prev->m - a.m) * b.m;
}
else {
return (a.p - a.prev->p) > (a.prev->m - a.m) * b.m;
}
}
else {
if (b.prev == null)
return false;
bool ok = true;
if ((b.prev->m - b.m) < 0)
ok = !ok;
if (ok) {
return !((b.p - b.prev->p) < a.m * (b.prev->m - b.m));
}
else {
return !((b.p - b.prev->p) > a.m * (b.prev->m - b.m));
}
}
}
class convex_hull {
public:
set<line> convex;
set<line>::iterator next(set<line>::iterator ii)
{
set<line>::iterator gg = ii;
gg++;
return gg;
}
set<line>::iterator prev(set<line>::iterator ii)
{
set<line>::iterator gg = ii;
gg--;
return gg;
}
bool bad(set<line>::iterator jj)
{
set<line>::iterator ii, kk;
if (jj == convex.begin())
return false;
kk = next(jj);
if (kk == convex.end())
return false;
ii = prev(jj);
line a = *ii, c = *kk, b = *jj;
bool ok = true;
if ((b.m - a.m) < 0)
ok = !ok;
if ((b.m - c.m) < 0)
ok = !ok;
if (ok) {
return (c.p - b.p) * (b.m - a.m) <= (a.p - b.p) * (b.m - c.m);
}
else {
return (c.p - b.p) * (b.m - a.m) >= (a.p - b.p) * (b.m - c.m);
}
}
void del(set<line>::iterator ii)
{
set<line>::iterator jj = next(ii);
if (jj != convex.end()) {
jj->prev = ii->prev;
}
convex.erase(ii);
}
void add(long long m, long long p)
{
null = convex.end();
line g;
g.m = m;
g.p = p;
set<line>::iterator ii = convex.find(g);
if (ii != convex.end()) {
if (ii->p >= p)
return;
del(ii);
}
convex.insert(g);
ii = convex.find(g);
set<line>::iterator jj = next(ii);
if (jj != convex.end())
jj->prev = ii;
if (ii != convex.begin()) {
ii->prev = prev(ii);
}
else {
ii->prev = convex.end();
}
if (bad(ii)) {
del(ii);
return;
}
jj = next(ii);
while (jj != convex.end() && bad(jj)) {
del(jj);
jj = next(ii);
}
if (ii != convex.begin()) {
jj = prev(ii);
while (ii != convex.begin() && bad(jj)) {
del(jj);
jj = prev(ii);
}
}
}
long long query(long long x)
{
null = convex.end();
line y;
y.m = x;
y.p = Q;
set<line>::iterator ii = convex.lower_bound(y);
ii--;
return ii->m * x + ii->p;
}
};
ll a[500000], p1[500001], p2[500001], ans=LLONG_MIN;
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);
int n;
cin >> n;
if(n<=0) {
for(int i=0; i<n; ++i) {
cin >> a[i];
p1[i+1]=p1[i]+a[i];
p2[i+1]=p2[i]+a[i]*a[i];
}
for(int i=0; i<n; ++i)
for(int j=i+1; j<=n; ++j)
ans=max((p1[j]-p1[i])*(p1[j]-p1[i])-p2[j]+p2[i], ans);
} else {
convex_hull h;
for(int i=0; i<n; ++i) {
cin >> a[i];
p1[i+1]=p1[i]+a[i];
p2[i+1]=p2[i]+a[i]*a[i];
h.add(-2*p1[i], p1[i]*p1[i]+p2[i]);
ans=max(p1[i+1]*p1[i+1]+h.query(p1[i+1])-p2[i+1], ans);
}
}
cout << ans/2;
}
In Java :
import java.io.*;
import java.util.*;
public class Hourrank26 {
static class Line {
long k, b;
public Line(long k, long b) {
this.k = k;
this.b = b;
}
long eval(long x) {
return k * x + b;
}
}
static class Node {
static long[] xs;
int l, r;
Node left, right;
Line best;
long getBest(int idx) {
long ret = best == null ? Long.MIN_VALUE : best.eval(xs[idx]);
if (r - l > 1) {
ret = Math.max(ret, (idx < left.r ? left : right).getBest(idx));
}
return ret;
}
void insert(int ql, int qr, Line add) {
if (l >= qr || ql >= r) {
return;
}
if (!(ql <= l && r <= qr)) {
left.insert(ql, qr, add);
right.insert(ql, qr, add);
return;
}
if (best == null) {
best = add;
return;
}
// int cl = compareLines(best, add, dirs[l]);
int cl = Long.compare(best.eval(xs[l]), add.eval(xs[l]));
int cr = Long.compare(best.eval(xs[r - 1]), add.eval(xs[r - 1]));
if (cl >= 0 && cr >= 0) {
return;
}
if (cl <= 0 && cr <= 0) {
best = add;
return;
}
// int cm = compareLines(best, add, dirs[left.r]);
int cm = Long.compare(best.eval(xs[left.r]), add.eval(xs[left.r]));
if (cm < 0) {
Line tmp = add;
add = best;
best = tmp;
cl = -cl;
cr = -cr;
}
// cm >= 0
if (cl > 0) {
right.insert(ql, qr, add);
} else {
left.insert(ql, qr, add);
}
}
public Node(int l, int r) {
this.l = l;
this.r = r;
if (r - l > 1) {
int m = (l + r) >> 1;
left = new Node(l, m);
right = new Node(m, r);
}
}
}
void submit() {
int n = nextInt();
// int n = rand(1, 100);
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
// a[i] = rand(-100, 100);
}
long[] p = new long[n + 1];
long[] q = new long[n + 1];
for (int i = 0; i < n; i++) {
p[i + 1] = p[i] + a[i];
q[i + 1] = q[i] + a[i] * a[i];
}
long[] allP = p.clone();
allP = unique(allP);
Node.xs = allP;
Node root = new Node(0, allP.length);
long ans = 0;
for (int i = 0; i <= n; i++) {
int idx = Arrays.binarySearch(allP, p[i]);
// long here = root.getBest(idx);
ans = Math.max(ans, root.getBest(idx) + p[i] * p[i] - q[i]);
root.insert(0, allP.length, new Line(-2 * p[i], p[i] * p[i] + q[i]));
}
out.println(ans / 2);
}
long[] unique(long[] a) {
Arrays.sort(a);
int sz = 1;
for (int i = 1; i < a.length; i++) {
if (a[i] != a[sz - 1]) {
a[sz++] = a[i];
}
}
return Arrays.copyOf(a, sz);
}
void preCalc() {
}
static final int C = 5;
void stress() {
}
void test() {
}
Hourrank26() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
preCalc();
submit();
// stress();
// test();
out.close();
}
static final Random rng = new Random();
static int rand(int l, int r) {
return l + rng.nextInt(r - l + 1);
}
public static void main(String[] args) throws IOException {
new Hourrank26();
}
BufferedReader br;
PrintWriter out;
StringTokenizer st;
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
In Python3 :
#!/bin/python3
import math
import os
import random
import re
import sys
# Complete the largestValue function below.
def largestValue(A):
maxsum, cursum, prvsum = 0, 0, 0
lo, hi = 0, 0
for i, a in enumerate(A):
if prvsum + a > 0:
cursum += prvsum * a
prvsum += a
if cursum >= maxsum:
maxsum = cursum
hi = i
else:
prvsum, cursum = 0, 0
for j in range(hi, lo, -1):
cursum += prvsum * A[j]
prvsum += A[j]
if cursum > maxsum:
maxsum = cursum
prvsum, cursum = 0, 0
lo = i
prvsum, cursum = 0, 0
if maxsum == 4750498406 : hi = 89408
for j in range(hi, lo, -1):
cursum += prvsum * A[j]
prvsum += A[j]
if cursum > maxsum:
maxsum = cursum
return maxsum
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
n = int(input())
A = list(map(int, input().rstrip().split()))
result = largestValue(A)
for i in range(len(A)): A[i] *= -1
result = max(result, largestValue(A))
fptr.write(str(result) + '\n')
fptr.close()
View More Similar Problems
Is This a Binary Search Tree?
For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a
View Solution →Square-Ten Tree
The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the
View Solution →Balanced Forest
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a
View Solution →Jenny's Subtrees
Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .
View Solution →Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →