Fibonacci Numbers Tree


Problem Statement :


Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in  is associated with some positive integer value (all values are initially ).

Let's define Fk as the Kth  Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T:

 1. UXK
Update the subtree rooted at node X such that the node at level 0 in subtree X (i.e., node X) will have  Fk added to it, all the nodes at level 1 will have Fk+1  added to them, and so on. More formally, all the nodes at a distance D  from node X  in the subtree of node  X will have the ( k - D)th Fibonacci number added to them.
 
2. QXY
Find the sum of all values associated with the nodes on the unique path from X  to  Y . Print your sum modulo  10^9 + 7 on a new line.
Given the configuration for tree T and a list of M  operations, perform all the operations efficiently.

Note: .F1 = F2 = 1.

Input Format

The first line contains 2  space-separated integers, N (the number of nodes in tree T) and M (the number of operations to be processed), respectively.
Each line i  of the N-1  subsequent lines contains an integer, P, denoting the parent of the ( i -1 )th node.
Each of the M subsequent lines contains one of the two types of operations mentioned in the Problem Statement above.

Constraints

1  <=  N, M  <=  10^5
1  <=  X,  Y  <=  N
1  <=  k  <=  10^15


Output Format

For each operation of type  2(i.e.,Q ), print the required answer modulo 10^9 + 7 on a new line.



Solution :



title-img


                            Solution in C :

In    C++  :







#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<cassert>
#define PB push_back
#define MP make_pair
#define sz(v) (in((v).size()))
#define forn(i,n) for(in i=0;i<(n);++i)
#define forv(i,v) forn(i,sz(v))
#define fors(i,s) for(auto i=(s).begin();i!=(s).end();++i)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef int in;
typedef vector<in> VI;
typedef vector<VI> VVI;
const in pmod=1000000007LL;
long long p2(long long a){
  return (1LL<<a);
}
template<typename T> T pw(T a, in b){
  T r=1LL;
  for(long long i=30;i>=0;i--){
    r*=r;
    if(b&p2(i))
      r*=a;
  }
  return r;
}
struct fp{
  long long a;
  fp(long long aa=0){
    a=aa;
    if(a<0 || a>=pmod){
      a%=pmod;
      if(a<0)
	a+=pmod;
    }
  }
  fp inv()const{
    return pw(*this,pmod-2);
  }
  fp operator*(const fp cp)const{
    return fp((a*cp.a)%pmod);
  }
  fp operator+(const fp cp)const{
    return fp((a+cp.a)>pmod?a+cp.a-pmod:a+cp.a);
  }
  fp operator/(const fp cp)const{
    return (*this)*cp.inv();
  }
  fp operator-(const fp cp)const{
    return (*this)+(-cp);
  }
  fp operator-()const{
    return (a==0?0:pmod-a);
  }
  fp& operator*=(const fp cp){
    return (*this)=(*this)*cp;
  }
  fp& operator/=(const fp cp){
    return (*this)=(*this)/cp;
  }
  fp& operator+=(const fp cp){
    return (*this)=(*this)+cp;
  }
  fp& operator-=(const fp cp){
    return (*this)=(*this)-cp;
  }
  bool operator==(const fp cp)const{
    return a==cp.a;
  }
  bool operator!=(const fp cp)const{
    return a!=cp.a;
  }
};
ostream& operator<<(ostream& os, fp a){
  return os<<a.a;
}
struct mat{
  vector<vector<fp> > a;
  in n,m;
  void ini(in pn, in pm){
    a.clear();
    n=pn;
    m=pm;
    a.resize(n,vector<fp>(m,fp(0LL)));
  }
  mat operator*(const mat& cp)const{
    assert(m==cp.n);
    mat r;
    r.ini(n,cp.m);
    long long t;
    forn(i,n){
      forn(j,cp.m){
	t=0;
	forn(k,m){
	  t+=a[i][k].a*cp.a[k][j].a;
	}
	r.a[i][j]=t;
      }
    }
    return r;
  }
  mat& operator*=(const mat& cp){
    assert(m==cp.n);
    mat r;
    r.ini(n,cp.m);
    long long t;
    forn(i,n){
      forn(j,cp.m){
	t=0;
	forn(k,m){
	  t+=a[i][k].a*cp.a[k][j].a;
	}
	r.a[i][j]=t;
      }
    }
    return *this=r;
  }
  mat operator+(const mat& cp)const{
    assert(n==cp.n && m==cp.m);
    mat r;
    r.ini(n,m);
    forn(i,n){
      forn(j,m){
	r.a[i][j]=a[i][j]+cp.a[i][j];
      }
    }
    return r;
  }
  mat& operator+=(const mat& cp){
    assert(n==cp.n && m==cp.m);
    forn(i,n){
      forn(j,m){
	a[i][j]+=cp.a[i][j];
      }
    }
    return *this;
  }
};
mat pwm(mat a, long long b){
  mat r=a;
  forv(i,r.a){
    forv(j,r.a[i])
      r.a[i][j]=(i==j);
  }
  bool odn=0;
  for(long long i=51;i>=0;i--){
    if(odn)
      r*=r;
    if(b&p2(i)){
      odn=1;
      r*=a;
    }
  }
  return r;
}
mat basfib;
mat fibmat;
mat ttp,ts;
mat smfib,sft;
vector<mat> smpw;
pair<fp,fp> fbat(long long a){
  ttp=pwm(fibmat,a-1)*basfib;
  return MP(ttp.a[0][0],ttp.a[1][0]);
}
struct fenw{
  vector<mat> fw;
  in n;
  void ini(in pn){
    n=pn;
    fw.clear();
    fw.resize(n);
    forn(i,n)
      fw[i].ini(3,1);
  }
  void ad(in l, mat ts){
    in ol=l;
    while(l<n){/*
		 mat tt=smpw[l-ol]*ts;
		 cout<<"ad "<<l<<endl;
		 forv(i,tt.a){
		 forv(j,tt.a[i]){
		 cout<<tt.a[i][j]<<" ";
		 }
		 cout<<endl;
		 }
		 cout<<endl;*/
      fw[l]+=smpw[l-ol]*ts;
      l|=(l+1);
    }
  }
  mat sm(in l){
    mat r;
    r.ini(3,1);
    in ol=l;
    while(l>=0){/*
		  mat tt=smpw[ol-l]*fw[l];
		  cout<<"sm "<<l<<endl;
		  forv(i,tt.a){
		  forv(j,tt.a[i]){
		  cout<<tt.a[i][j]<<" ";
		  }
		  cout<<endl;
		  }
		  cout<<endl;*/
      r+=smpw[ol-l]*fw[l];
      l&=(l+1);
      --l;
    }
    return r;
  }
};
vector<fenw> fws;
VI fid,floc;
VI sts;
const in mxp=18;
VI pr[mxp];
vector<fp> vlf,vls;
VI ht,pap;
void mkfid(in u, bool rq){
  if(fid[u]!=-2)
    return;
  if(sts[u]*2<sts[pr[0][u]] || u==0){
    if(rq==0){
      fid[u]=floc[u]=-1;
      return;
    }
    in s=sz(fws);
    fws.PB(fenw());
    fid[u]=s;
    floc[u]=0;
    return;
  }
  mkfid(pr[0][u],1);
  fid[u]=fid[pr[0][u]];
  floc[u]=floc[pr[0][u]]+1;
}
void proct(){
  in n=sz(pr[0]);
  sts.resize(n,1);
  fid=floc=VI(n,-2);
  for(in i=n-1;i>0;--i){
    sts[pr[0][i]]+=sts[i];
  }
  for(in i=n-1;i>=0;--i){
    mkfid(i,0);
  }
  for(in i=n-1;i>=0;--i){
    if(fid[i]<0)
      continue;
    if(sz(fws[fid[i]].fw))
      continue;
    fws[fid[i]].ini(floc[i]+1);
  }
  pap.resize(n);
  forn(i,n){
    if(i==0){
      pap[i]=-1;
      continue;
    }
    if(floc[i]==0 || floc[i]==-1){
      pap[i]=pr[0][i];
      continue;
    }
    pap[i]=pap[pr[0][i]];
  }
}
in lca(in u, in v){
  if(ht[u]<ht[v])
    swap(u,v);
  for(in i=mxp-1;i>=0;--i){
    if(ht[u]-p2(i)>=ht[v])
      u=pr[i][u];
  }
  assert(ht[u]==ht[v]);
  for(in i=mxp-1;i>=0;--i){
    if(pr[i][u]!=pr[i][v]){
      u=pr[i][u];
      v=pr[i][v];
    }
  }
  if(u!=v){
    u=pr[0][u];
    v=pr[0][v];
  }
  assert(u==v);
  return u;
}
struct qel{
  in u;
  qel(in a=0){
    u=a;
  }
  bool operator<(const qel& cp)const{
    return ht[u]<ht[cp.u];
  }
};
priority_queue<qel> q;
VI lvs,lad;
in vdt;
vector<mat> fv;
mat r;
vector<mat> ucm;
void clr(mat& c){
  forv(i,c.a){
    forv(j,c.a[i])
      c.a[i][j]=0;
  }
}
void prq(){
  qel tel;
  in tx;
  while(!q.empty()){
    tel=q.top();
    q.pop();
    tx=tel.u;
    if(lvs[tx]==vdt)
      continue;
    lvs[tx]=vdt;
    if(fid[tx]==-1){
      r+=ucm[tx]*fv[tx];
      if(tx==pr[0][tx]){
	clr(ucm[tx]);
	continue;
      }
      ucm[pr[0][tx]]+=smpw[1]*ucm[tx];
      clr(ucm[tx]);
      if(lad[pr[0][tx]]!=vdt){
	lad[pr[0][tx]]=vdt;
	q.push(qel(pr[0][tx]));
      }
      continue;
    }
    r+=ucm[tx]*fws[fid[tx]].sm(floc[tx]);
    if(pap[tx]==-1){
      clr(ucm[tx]);
      continue;
    }
    ucm[pap[tx]]+=smpw[floc[tx]+1]*ucm[tx];
    clr(ucm[tx]);
    if(lad[pap[tx]]!=vdt){
      lad[pap[tx]]=vdt;
      q.push(qel(pap[tx]));
    }
  }
}
void ansq(in tx, in ty){
  r.ini(3,1);
  mat cm;
  cm.ini(3,3);
  forn(i,3)
    cm.a[i][i]=1;
  in u=lca(tx,ty);
  q.push(qel(tx));
  q.push(qel(ty));
  q.push(qel(u));
  ucm[tx]+=cm;
  ucm[ty]+=cm;
  forn(i,3)
    cm.a[i][i]*=-1;
  ucm[u]+=cm;
  if(u!=0){
    q.push(qel(pr[0][u]));
    ucm[pr[0][u]]+=cm;
  }
  ++vdt;
  prq();
  cout<<r.a[0][0]<<"\n";
}
void adq(in tx, long long ty){
  mat crm;
  crm.ini(3,1);
  pair<fp,fp> tt=fbat(ty);
  crm.a[0][0]=crm.a[1][0]=tt.first;
  crm.a[2][0]=tt.second;
  if(fid[tx]==-1){
    fv[tx]+=crm;
    return;
  }
  fws[fid[tx]].ad(floc[tx],crm);
}
VI tpr;
VI cod,decod;
VVI tcd;
in nxdec;
void dfscod(in u){
  forv(i,tcd[u]){
    cod[nxdec]=tcd[u][i];
    decod[tcd[u][i]]=nxdec;
    ++nxdec;
    dfscod(tcd[u][i]);
  }
}
void mkcod(){
  in n=sz(tpr);
  cod=decod=VI(n,-1);
  tcd.resize(n);
  for(in i=1;i<n;++i)
    tcd[tpr[i]].PB(i);
  cod[0]=decod[0]=0;
  nxdec=1;
  dfscod(0);
}
void mkt(){
  in n,m;
  cin>>n>>m;
  lvs.resize(n,0);
  lad=lvs;
  vdt=1;
  ucm.resize(n);
  forn(i,n)
    ucm[i].ini(3,3);
  tpr.resize(n);
  tpr[0]=0;
  forn(i,n-1){
    cin>>tpr[i+1];
    --tpr[i+1];
  }
  mkcod();
  forn(z,mxp)
    pr[z].resize(n);
  ht.resize(n);
  fv.resize(n);
  forn(i,n)
    fv[i].ini(3,1);
  ht[0]=0;
  pr[0][0]=0;
  forn(i,n-1){
    pr[0][i+1]=decod[tpr[cod[i+1]]];
    assert(pr[0][i+1]<i+1);
    ht[i+1]=ht[pr[0][i+1]]+1;
  }
  for(in i=1;i<mxp;++i){
    forn(j,n)
      pr[i][j]=pr[i-1][pr[i-1][j]];
  }
  proct();
  char typ;
  in tx;
  long long ty;
  forn(zz,m){
    cin>>typ>>tx>>ty;
    if(typ=='Q'){
      ansq(decod[tx-1],decod[ty-1]);
    }
    else{
      adq(decod[tx-1],ty);
    }
  }
}
const in mx=100009;
int main(){
  ios::sync_with_stdio(0);
  cin.tie(0);
  smfib.ini(3,3);
  smfib.a[0][0]=smfib.a[0][2]=smfib.a[1][2]=smfib.a[2][1]=smfib.a[2][2]=1;
  sft.ini(3,1);
  basfib.ini(2,1);
  basfib.a[0][0]=basfib.a[1][0]=1LL;
  fibmat.ini(2,2);
  fibmat.a[0][0]=0;
  fibmat.a[0][1]=fibmat.a[1][0]=fibmat.a[1][1]=1LL;
  smpw.resize(mx);
  smpw[0].ini(3,3);
  forn(i,3)
    smpw[0].a[i][i]=1;
  for(in i=1;i<sz(smpw);++i)
    smpw[i]=smpw[i-1]*smfib;
  mkt();
  return 0;
}








In   Java  :








import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;

public class H {
    InputStream is;
    PrintWriter out;
    String INPUT = "";
    
    void solve(){
        int n = ni();
        int Q = ni();
        par = new int[n];
        for(int i = 1;i < n;i++){
            par[i] = ni()-1;
        }
        par[0] = -1;
        int[][] g = parentToG(par);
        int[][] pars = parents3(g, 0);
        int[] ord = pars[1], dep = pars[2];
        clus = decomposeToHeavyLight(g,par, ord);
        cluspath = clusPaths(clus, ord);
        clusiind = clusIInd(cluspath, n);
        int m = cluspath.length;
        sts = new SegmentTreeMatrix[m];
        for(int i = 0;i < m;i++){
            sts[i] = new SegmentTreeMatrix(cluspath[i].length);
        }
        int[][] spar = logstepParents(par);
        
        for(int z = 0;z < Q;z++){
            char type = nc();
            if(type == 'U'){
                int x = ni()-1;
                long K = nl();
                sts[clus[x]].update(clusiind[x], K);
            }else{
                int mod = 1000000007;
                int x = ni()-1, y = ni()-1;
                int lca = lca2(x, y, spar, dep);
                long ret = d(x)+d(y)-d(lca)-d(par[lca]);
                ret %= mod;
                if(ret < 0)ret += mod;
                out.println(ret);
            }
        }
    }
    
    int[] par;
    int[] clus, clusiind;
    int[][] cluspath;
    SegmentTreeMatrix[] sts;
    
    long d(int x){
        if(x == -1)return 0;
        int[] lcx = new int[100];
        int[] lto = new int[100];
        int p = 0;
        int cx = clus[x];
        int ind = clusiind[x];
        while (true) {
            lcx[p] = cx;
            lto[p] = ind+1;
            p++;
            int con = par[cluspath[cx][0]];
            if(con == -1)break;
            ind = clusiind[con];
            cx = clus[con];
        }
        int[] v = {0, 0, 1, 0};
        for(int i = p-1;i >= 0;i--){
            v = sts[lcx[i]].apply(0, lto[i], v);
        }
        return v[3];
    }
    
    public static class SegmentTreeMatrix {
        public int M, H, N;
        public int[][][] node;
        public static int mod = 1000000007;
        public static long BIG = 8L*mod*mod;
        public static int S = 4;
        
        public SegmentTreeMatrix(int n){
            N = n;
            M = Integer.highestOneBit(Math.max(N-1, 1))<<2;
            H = M>>>1;
            
            node = new int[M][][];
            for(int i = 0;i < N;i++){
                node[H+i] = new int[S][S];
                node[H+i][0][0] = 1;
                node[H+i][0][1] = 1;
                node[H+i][1][0] = 1;
                node[H+i][3][1] = 1;
                node[H+i][2][2] = 1;
                node[H+i][3][3] = 1;
                node[H+i][3][0] = 1;
            }
            
            for(int i = H-1;i >= 1;i--)propagate(i);
        }
        
        private void propagate(int cur){
            node[cur] = prop2(node[2*cur], node[2*cur+1], node[cur]);
        }
        
        private int[][] prop2(int[][] L, int[][] R, int[][] C){
            if(L != null && R != null){
                C = mul(R, L, C, mod);
                return C;
            }else if(L != null){
                return prop1(L, C);
            }else if(R != null){
                return prop1(R, C);
            }else{
                return null;
            }
        }
        
        private int[][] prop1(int[][] L, int[][] C){
            if(C == null){
                C = new int[S][];
                for(int i = 0;i < S;i++){
                    C[i] = Arrays.copyOf(L[i], S);
                }
            }else{
                for(int i = 0;i < S;i++){
                    C[i] = Arrays.copyOf(L[i], S);
                }
            }
            return C;
        }
        
        public void update(int pos, long x) {
            int[][] M = {{1, 1}, {1, 0}};
            int[] v = {1, 0};
            v = pow(M, v, x-1);
            node[H+pos][0][2] += v[0];
            if(node[H+pos][0][2] >= mod)node[H+pos][0][2] -= mod;
            node[H+pos][1][2] += v[1];
            if(node[H+pos][1][2] >= mod)node[H+pos][1][2] -= mod;
            node[H+pos][3][2] += v[0];
            if(node[H+pos][3][2] >= mod)node[H+pos][3][2] -= mod;
            for(int i = H+pos>>>1;i >= 1;i>>>=1)propagate(i);
        }
        
        public int[] apply(int l, int r, int[] v){
            return apply(l, r, 0, H, 1, v);
        }
        
                   if(l <= cl && cr <= r){
                return mul(node[cur], v, mod);
            }else{
                int mid = cl+cr>>>1;
                if(cl < r && l < mid){
                    v = apply(l, r, cl, mid, 2*cur, v);
                }
                if(mid < r && l < cr){
                    v = apply(l, r, mid, cr, 2*cur+1, v);
                }
                return v;
            }
        }
        
        
        public static int[] mul(int[][] A, int[] v, int mod){
            int m = A.length;
            int n = v.length;
            int[] w = new int[m];
            for(int i = 0;i < m;i++){
                long sum = 0;
                for(int k = 0;k < n;k++){
                    sum += (long)A[i][k] * v[k];
                    if(sum >= BIG)sum -= BIG;
                }
                w[i] = (int)(sum % mod);
            }
            return w;
        }
        
        public static int[][] 
mul(int[][] A, int[][] B, int[][] C, int mod){
            int m = A.length;
            int n = A[0].length;
            int o = B[0].length;
            if(C == null)C = new int[m][o];
            for(int i = 0;i < m;i++){
                for(int j = 0;j < o;j++){
                    long sum = 0;
                    for(int k = 0;k < n;k++){
                        sum += (long)A[i][k] * B[k][j];
                        if(sum >= BIG)sum -= BIG;
                    }
                    sum %= mod;
                    C[i][j] = (int)sum;
                }
            }
            return C;
        }
        
        public static int[] pow(int[][] A, int[] v, long e){
            for(int i = 0;i < v.length;i++){
                if(v[i] >= mod)v[i] %= mod;
            }
            int[][] MUL = A;
            for(;e > 0;e>>>=1) {
                if((e&1)==1)v = mul(MUL, v);
                MUL = p2(MUL);
            }
            return v;
        }
        
        public static int[] mul(int[][] A, int[] v){
            int m = A.length;
            int n = v.length;
            int[] w = new int[m];
            for(int i = 0;i < m;i++){
                long sum = 0;
                for(int k = 0;k < n;k++){
                    sum += (long)A[i][k] * v[k];
                    if(sum >= BIG)sum -= BIG;
                }
                w[i] = (int)(sum % mod);
            }
            return w;
        }
        
        public static int[][] p2(int[][] A){
            int n = A.length;
            int[][] C = new int[n][n];
            for(int i = 0;i < n;i++){
                long[] sum = new long[n];
                for(int k = 0;k < n;k++){
                    for(int j = 0;j < n;j++){
                        sum[j] += (long)A[i][k] * A[k][j];
                        if(sum[j] >= BIG)sum[j] -= BIG;
                    }
                }
                for(int j = 0;j < n;j++){
                    C[i][j] = (int)(sum[j] % mod);
                }
            }
            return C;
        }

    }    
    
public static int lca2(int a, int b, 
int[][] spar, int[] depth) {
        if (depth[a] < depth[b]) {
  b = ancestor(b, depth[b] - depth[a], spar);
        } else if (depth[a] > depth[b]) {
 a = ancestor(a, depth[a] - depth[b], spar);
        }

        if (a == b)
            return a;
        int sa = a, sb = b;
for (int low = 0, high = depth[a],
 t = Integer.highestOneBit(high), 
k = Integer.numberOfTrailingZeros(t); t > 0;
 t >>>= 1, k--) {
            if ((low ^ high) >= t) {
                if (spar[k][sa] != spar[k][sb]) {
                    low |= t;
                    sa = spar[k][sa];
                    sb = spar[k][sb];
                } else {
                    high = low | t - 1;
                }
            }
        }
        return spar[0][sa];
    }

protected static int ancestor(int a, int m, int[][] spar) {
     for (int i = 0; m > 0 && a != -1; m >>>= 1, i++) {
            if ((m & 1) == 1)
                a = spar[i][a];
        }
        return a;
    }

    public static int[][] logstepParents(int[] par) {
        int n = par.length;
 int m = Integer.numberOfTrailingZeros(
Integer.highestOneBit(n - 1)) + 1;
        int[][] pars = new int[m][n];
        pars[0] = par;
        for (int j = 1; j < m; j++) {
            for (int i = 0; i < n; i++) {
                pars[j][i] = pars[j - 1][i] == -1 ? -1
                        : pars[j - 1][pars[j - 1][i]];
            }
        }
        return pars;
    }

    
    public static int[] 
decomposeToHeavyLight(int[][] g, int[] par, int[] ord) {
        int n = g.length;
        int[] size = new int[n];
        Arrays.fill(size, 1);
        for (int i = n - 1; i > 0; i--)
            size[par[ord[i]]] += size[ord[i]];

        int[] clus = new int[n];
        Arrays.fill(clus, -1);
        int p = 0;
        outer: for (int i = 0; i < n; i++) {
            int u = ord[i];
            if (clus[u] == -1)
                clus[u] = p++;
            for (int v : g[u]) {
                if (par[u] != v && size[v] >= size[u] / 2) {
                    clus[v] = clus[u];
                    continue outer;
                }
            }
            for (int v : g[u]) {
                if (par[u] != v) {
                    clus[v] = clus[u];
                    break;
                }
            }
        }
        return clus;
    }

 public static int[][] clusPaths(int[] clus, int[] ord) {
        int n = clus.length;
        int[] rp = new int[n];
        int sup = 0;
        for (int i = 0; i < n; i++) {
            rp[clus[i]]++;
            sup = Math.max(sup, clus[i]);
        }
        sup++;

        int[][] row = new int[sup][];
        for (int i = 0; i < sup; i++)
            row[i] = new int[rp[i]];

        for (int i = n - 1; i >= 0; i--) {
            row[clus[ord[i]]][--rp[clus[ord[i]]]] = ord[i];
        }
        return row;
    }

    public static int[] clusIInd(int[][] clusPath, int n) {
        int[] iind = new int[n];
        for (int[] path : clusPath) {
            for (int i = 0; i < path.length; i++) {
                iind[path[i]] = i;
            }
        }
        return iind;
    }
    
    public static int[][] parentToG(int[] par){
        int n = par.length;
        int[] ct = new int[n];
        for(int i = 0;i < n;i++){
            if(par[i] >= 0){
                ct[i]++;
                ct[par[i]]++;
            }
        }
        int[][] g = new int[n][];
        for(int i = 0;i < n;i++){
            g[i] = new int[ct[i]];
        }
        for(int i = 0;i < n;i++){
            if(par[i] >= 0){
                g[par[i]][--ct[par[i]]] = i;
                g[i][--ct[i]] = par[i];
            }
        }
        return g;
    }


    public static int[][] parents3(int[][] g, int root) {
        int n = g.length;
        int[] par = new int[n];
        Arrays.fill(par, -1);

        int[] depth = new int[n];
        depth[0] = 0;

        int[] q = new int[n];
        q[0] = root;
        for (int p = 0, r = 1; p < r; p++) {
            int cur = q[p];
            for (int nex : g[cur]) {
                if (par[cur] != nex) {
                    q[r++] = nex;
                    par[nex] = cur;
                    depth[nex] = depth[cur] + 1;
                }
            }
        }
        return new int[][] { par, q, depth };
    }

    static int[][] packU(int n, int[] from, int[] to) {
        int[][] g = new int[n][];
        int[] p = new int[n];
        for (int f : from)
            p[f]++;
        for (int t : to)
            p[t]++;
        for (int i = 0; i < n; i++)
            g[i] = new int[p[i]];
        for (int i = 0; i < from.length; i++) {
            g[from[i]][--p[from[i]]] = to[i];
            g[to[i]][--p[to[i]]] = from[i];
        }
        return g;
    }
    
    void run() throws Exception{
        is = INPUT.isEmpty() ? 
System.in : new ByteArrayInputStream(INPUT.getBytes());
        out = new PrintWriter(System.out);
        
        long s = System.currentTimeMillis();
        solve();
        out.flush();
 if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
    }

 public static void main(String[] args) 
throws Exception { new H().run(); }
    
    private byte[] inbuf = new byte[1024];
    private int lenbuf = 0, ptrbuf = 0;
    
    private int readByte(){
if(lenbuf == -1)throw new InputMismatchException();
        if(ptrbuf >= lenbuf){
            ptrbuf = 0;
            try { lenbuf = is.read(inbuf); }
 catch (IOException e) 
{ throw new InputMismatchException(); }
            if(lenbuf <= 0)return -1;
        }
        return inbuf[ptrbuf++];
    }
    
    private boolean isSpaceChar(int c)
 { return !(c >= 33 && c <= 126); }
    private int skip() 
{ int b; while((b = readByte()) != -1
 && isSpaceChar(b)); return b; }
    
    private double nd() 
{ return Double.parseDouble(ns()); }
    private char nc() { return (char)skip(); }
    
    private String ns(){
        int b = skip();
        StringBuilder sb = new StringBuilder();
        while(!(isSpaceChar(b))){
            sb.appendCodePoint(b);
            b = readByte();
        }
        return sb.toString();
    }
    
    private char[] ns(int n){
        char[] buf = new char[n];
        int b = skip(), p = 0;
        while(p < n && !(isSpaceChar(b))){
            buf[p++] = (char)b;
            b = readByte();
        }
   return n == p ? buf : Arrays.copyOf(buf, p);
    }
    
    private char[][] nm(int n, int m){
        char[][] map = new char[n][];
        for(int i = 0;i < n;i++)map[i] = ns(m);
        return map;
    }
    
    private int[] na(int n){
        int[] a = new int[n];
        for(int i = 0;i < n;i++)a[i] = ni();
        return a;
    }
    
    private int ni(){
        int num = 0, b;
        boolean minus = false;
        while((b = readByte()) != -1 
&& !((b >= '0' && b <= '9') || b == '-'));
        if(b == '-'){
            minus = true;
            b = readByte();
        }
        
        while(true){
            if(b >= '0' && b <= '9'){
                num = num * 10 + (b - '0');
            }else{
                return minus ? -num : num;
            }
            b = readByte();
        }
    }
    
    private long nl(){
        long num = 0;
        int b;
        boolean minus = false;
while((b = readByte()) != -1 
&& !((b >= '0' && b <= '9') || b == '-'));
        if(b == '-'){
            minus = true;
            b = readByte();
        }
        
        while(true){
            if(b >= '0' && b <= '9'){
                num = num * 10 + (b - '0');
            }else{
                return minus ? -num : num;
            }
            b = readByte();
        }
    }
    
    private static void tr(Object... o)
 { System.out.println(Arrays.deepToString(o)); }
}








In   Python3  :




#!/usr/bin/python

mod = 10**9 + 7

cache = { 0: (0, 1), 1: (1, 1) }
def fib_pair(n):
    if n in cache:
        return cache[n]

    hn = n//2
    f, fp = fib_pair(hn)
    if n&1:
        res = (fp*fp + f*f) % mod, (2*f+fp)*fp % mod
    else:
        fm = fp - f
        if fm < 0:
            fm += mod
        res = (2*fm+f)*f % mod, (fp*fp + f*f) % mod

    if n < 1000000:
        cache[n] = res

    return res

n, m = map(int, input().strip().split())
parents = (n+1) * [0]
children = [[] for _ in range(n+1)]
for i in range(2, n+1):
    j = int(input())
    parents[i] = j
    children[j].append(i)
depths = (n+1) * [0]
stack = [(1, 1)]
while stack:
    i, d = stack.pop()
    depths[i] = d
    for j in children[i]:
        stack.append((j, d+1))

nrs = (n+1) * [0]
for _ in range(m):
    q, si, sj = input().strip().split()
    if q == 'U':
        x, k = int(si), int(sj)
        fibs = list(fib_pair(k))
        stack = [(x, 0)]
        while stack:
            y, l = stack.pop()
            if l >= len(fibs):
                fibs.append((fibs[-1] + fibs[-2]) % mod)
            nrs[y] += fibs[l]
            for z in children[y]:
                stack.append((z, l+1))
    else:
        i, j = int(si), int(sj)
        if depths[i] < depths[j]:
            i, j = j, i
        fsum = 0
        while depths[j] < depths[i]:
            fsum += nrs[i]
            i = parents[i]
        while i != j:
            fsum += nrs[i] + nrs[j]
            j = parents[j]
            i = parents[i]
        fsum += nrs[i]
        print(fsum % mod)
                        








View More Similar Problems

Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

View Solution →

Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n

View Solution →

Polynomial Division

Consider a sequence, c0, c1, . . . , cn-1 , and a polynomial of degree 1 defined as Q(x ) = a * x + b. You must perform q queries on the sequence, where each query is one of the following two types: 1 i x: Replace ci with x. 2 l r: Consider the polynomial and determine whether is divisible by over the field , where . In other words, check if there exists a polynomial with integer coefficie

View Solution →

Costly Intervals

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the

View Solution →

The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

View Solution →

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →