**Self-Driving Bus**

### Problem Statement :

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between every pair of cities which belongs to the subset. Every city in the path must belong to the subset. Input Format The first line contains a single positive integer , n. The n - 1 subsequent lines each contain two positive space-separated integers, ai and bi , describe an edge connecting two nodes in tree T. Constraints 1 <= n <= 2 x 10^5 1 <= ai , bi <= n Output Format Print a single integer: the number of segments [ L , R ], which are connected in tree T.

### Solution :

` ````
Solution in C :
In C++ :
#include<iostream>
#include<vector>
using namespace std;
typedef long long int lli;
typedef pair<lli,lli> ii;
typedef vector<lli> vi;
typedef vector<vi> vii;
const lli MAXN = 200200;
lli par[MAXN], upr[MAXN],dnr[MAXN];
lli run_upr[MAXN], run_dnr[MAXN], grand[MAXN];
vii G(MAXN);
void set_parents(lli m,lli a,lli b, lli p){
upr[m] = max(m,upr[p]);
dnr[m] = min(m,dnr[p]);
par[m] = p;
grand[m] = grand[p];
for(auto it = G[m].begin() ; it != G[m].end(); it++){
if((*it) < a || (*it) >= b || (*it) == p) continue;
set_parents(*it, a, b, m);
}
}
lli middle_case(lli m, lli a, lli b){
run_upr[m] = run_dnr[m] = m;
lli aux;
for(aux = m ; aux < b && grand[aux] == m ; aux++);
b = aux;
for(aux = m ; aux >= a && grand[aux] == m ; aux--);
a = aux + 1;
for(lli i = m + 1 ; i < b ; i++){
run_upr[i] = max(run_upr[i-1], upr[i]);
run_dnr[i] = min(run_dnr[i-1], dnr[i]);
}
for(lli i = m - 1 ; i >= a ; i--){
run_upr[i] = max(run_upr[i+1], upr[i]);
run_dnr[i] = min(run_dnr[i+1], dnr[i]);
}
lli total = 0; // {m}
// Contamos [i,d] con i <= m/2, d>= m/2
for(lli d = m, l = m + 1, r = m+ 1, ct = 0; d < b ; d++){
if(d != run_upr[d]) continue;
for(; l - 1>= a && d >= run_upr[l- 1] ;l--){
if(l-1 == run_dnr[l-1]) ct++;
}
for(; r - 1> run_dnr[d] && r > l; r--){
if(r - 1 == run_dnr[r-1]) ct--;
}
total += ct;
}
return total;
}
lli solve(lli a, lli b){
if(a == b){
return 0;
}
if(a + 1 == b){
return 1;
}
lli m = (a+b)/2;
lli x,y,z;
upr[m] = par[m] = dnr[m] = grand[m] = m;
set_parents(m,a,b,m);
x = middle_case(m,a,b);
y = solve(a,m);
z = solve(m + 1,b);
return (x+y+z);
}
int main(){
lli n, a,b;
cin >> n;
for(int i = 1 ; i<n;i++){
cin >> a >> b;
a--;
b--;
G[a].push_back(b);
G[b].push_back(a);
}
cout << solve(0,n) << endl;
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int nodeNum = Integer.parseInt(sc.nextLine());
List<List<Integer>> refer = new ArrayList<List<Integer>>();
for(int i=0; i<nodeNum; i++) {
refer.add(new ArrayList<Integer>());
}
while(sc.hasNextLine()) {
String[] pair = sc.nextLine().split(" ");
putRefer(refer, pair[0], pair[1]);
}
int result = 0;
for(int i=1; i<=nodeNum; i++) {
boolean[] battleFront = new boolean[nodeNum];
expandFront(i, battleFront, refer);
result++;
int upto = i;
for(int j=i+1; j<=nodeNum; j++) {
if(battleFront[j-1]) {
expandFront(j, battleFront, refer);
if(allInFront(battleFront, upto, j)) {
result++;
for(int k=upto+1; k<j; k++) {
expandFront(k, battleFront, refer);
}
upto = j;
}
}
}
}
System.out.println(result);
}
public static void putRefer(List<List<Integer>> refer, String s1, String s2) {
int a = Integer.parseInt(s1);
int b = Integer.parseInt(s2);
List<Integer> tmp = refer.get(a-1);
tmp.add(b);
tmp = refer.get(b-1);
tmp.add(a);
}
public static void expandFront(int i,
boolean[] battleFront, List<List<Integer>> refer) {
List<Integer> tmp = refer.get(i-1);
battleFront[i-1] = true;
if(tmp == null) {
return;
}
for(Integer thisInt : tmp) {
battleFront[thisInt-1] = true;
}
}
public static boolean allInFront(boolean[] battleFront, int upto, int j) {
for(int i=upto; i<j-1; i++) {
if(battleFront[i] == false) {
return false;
}
}
return true;
}
public static void printArray(boolean[] battleFront) {
for(boolean b : battleFront) {
System.out.print(b + " ");
}
System.out.println(" ");
}
public static void printList(List<List<Integer>> refer) {
for(List<Integer> l : refer) {
if(l == null) {
System.out.println("null ");
}
else {
for(Integer ii : l) {
System.out.print(ii + " ");
}
System.out.println(" ");
}
}
}
}
In Python3 :
from heapq import *
n=int(input())
neighbors = {}
for x in range(n):
neighbors[x] = []
for i in range(n-1):
a, b = map(int,input().split())
neighbors[a-1].append(b-1)
neighbors[b-1].append(a-1)
def search(source):
ans = 0
cur_max = 0
cur_len = 0
heap = [source]
vis = [False for i in range(n)]
while len(heap) > 0:
x = heappop(heap)
cur_max = max(cur_max, x)
cur_len += 1
vis[x] = True
if cur_max - source + 1 == cur_len:
ans += 1
for y in neighbors[x]:
if y >= source and vis[y] == False:
heappush(heap, y)
return ans
ans = 0
prev = 0
for x in range(n-1, -1, -1):
neigh = 0
plus = 0
for y in neighbors[x]:
if y > x:
neigh += 1
if y == x + 1:
plus = 1
if plus == neigh and plus == 1:
prev += 1
else:
prev = search(x)
ans += prev
print(ans)
```

## View More Similar Problems

## Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

View Solution →## Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

View Solution →## Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →## Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →## Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →## Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

View Solution →