**Poisonous Plants**

### Problem Statement :

There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plant with more pesticide content than the plant to its left. Example p = [ 3, 6, 2, 7, 5 ] // pesticide levels Use a 1-indexed array. On day 1, plants 2 and 4 die leaving p' = [ 3, 2, 5 ] . On day ,2, plant 3 in p' dies leaving p^n = [ 3, 2 ]. There is no plant with a higher concentration of pesticide than the one to its left, so plants stop dying after day 2. Function Description Complete the function poisonousPlants in the editor below. poisonousPlants has the following parameter(s): int p[n]: the pesticide levels in each plant Returns - int: the number of days until plants no longer die from pesticide Input Format The first line contains an integer n, the size of the array p. The next line contains n space-separated integers p[ i ] .

### Solution :

` ````
Solution in C :
In C++ :
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<cassert>
#define PB push_back
#define MP make_pair
#define sz(v) (in((v).size()))
#define forn(i,n) for(in i=0;i<(n);++i)
#define forv(i,v) forn(i,sz(v))
#define fors(i,s) for(auto i=(s).begin();i!=(s).end();++i)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef long long in;
typedef vector<in> VI;
typedef vector<VI> VVI;
in dct=0;
map<in,in> mar;
set<in> td;
void proc(in id){
auto it=mar.find(id);
auto it2=it;
++it2;
mar.erase(it);
if(it2!=mar.end() && it2!=mar.begin()){
it=it2;
--it;
if(it2->second>it->second)
td.insert(it2->first);
else{
if(td.count(it2->first))
td.erase(it2->first);
}
}
}
VI otd;
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
in n;
cin>>n;
in ta;
forn(i,n){
cin>>ta;
mar[i]=ta;
if(i>0 && mar[i]>mar[i-1])
td.insert(i);
}
while(!td.empty()){
dct++;
otd.clear();
fors(i,td)
otd.PB(*i);
td.clear();
reverse(all(otd));
forv(i,otd){
proc(otd[i]);
}
}
cout<<dct<<endl;
return 0;
}
In Java :
import java.util.Scanner;
public class Solution {
private Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
new Solution().solve();
}
private void solve() {
int n = sc.nextInt();
int[] p = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = sc.nextInt();
}
int min = p[0];
int maxDays = 0;
for (int i = 1; i < n; ++i) {
min = Math.min(min, p[i]);
if (p[i] > p[i - 1]) {
int last = p[i];
int k = i + 1;
int days = 1;
while (k < n && min < p[k]) {
if (p[k] <= last) {
last = p[k];
++days;
}
++k;
}
maxDays = Math.max(maxDays, days);
}
}
System.out.println(maxDays);
}
}
In C :
#include<stdio.h>
int main(){
long int n,i,j,min=0,locmin;
scanf("%ld",&n);
long long int *p=(long long int *)malloc(sizeof(long long int)*n);
for(i=0;i<n;i++)
scanf("%lld",&p[i]);
i=n-2;
j=n-1;
while(i>=0){
if(j<n && p[j]>p[i]){
locmin=0;
while(j<n && (p[j]>p[i] || p[j]<0)){
//if(p[j-1]<0)
if(p[j]>0)
p[j]=locmin-1;
if(locmin>p[j])
locmin = p[j];
//else
//p[j] = -1;
j++;
}
}
j=i;
i--;
}
for(i=0;i<n;i++){
if(p[i]<min)
min=p[i];
}
printf("%ld ",-min);
free(p);
return 0;
}
In Python3 :
class plant:
def __init__(self, pest):
self.pest = pest
self.prevkiller = self.nextkiller = None
__slots__ = 'pest,next,prevkiller,nextkiller'.split(',')
nplants = int(input())
plants = [int(pest) for pest in input().split()]
start = current = plant(plants[0])
curkiller = firstkiller = plant(None)
for pest in plants[1:]:
current.next = newplant = plant(pest)
if current.pest < newplant.pest:
curkiller.nextkiller = current
current.prevkiller = curkiller
curkiller = current
current = newplant
last = current.next = plant(-1)
last.prevkiller = curkiller
curkiller.nextkiller = last
day = 0
while last.prevkiller is not firstkiller:
day += 1
curkiller = last.prevkiller
while curkiller is not firstkiller:
victim = curkiller.next
if not(hasattr(victim, "next")):
print(victim.pest, day)
curkiller.next = victim.next
if victim.prevkiller == curkiller:
curkiller.nextkiller = victim.nextkiller
victim.nextkiller.prevkiller = curkiller
victim.prevkiller = victim.nextkiller = None
curkiller = curkiller.prevkiller
curkiller = last.prevkiller
while curkiller is not firstkiller:
prevkiller = curkiller.prevkiller
if curkiller.pest >= curkiller.next.pest:
curkiller.nextkiller.prevkiller = prevkiller
prevkiller.nextkiller = curkiller.nextkiller
curkiller.prevkiller = curkiller.nextkiller = None
curkiller = prevkiller
print(day)
```

## View More Similar Problems

## Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

View Solution →## Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

View Solution →## Pair Sums

Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v

View Solution →## Lazy White Falcon

White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi

View Solution →## Ticket to Ride

Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game. There are n cities on the map and n - 1 road plans. Each road plan consists of the following: Two cities which can be directly connected by a road. The length of the proposed road. The entire road plan is designed in such a way that if o

View Solution →## Heavy Light White Falcon

Our lazy white falcon finally decided to learn heavy-light decomposition. Her teacher gave an assignment for her to practice this new technique. Please help her by solving this problem. You are given a tree with N nodes and each node's value is initially 0. The problem asks you to operate the following two types of queries: "1 u x" assign x to the value of the node . "2 u v" print the maxim

View Solution →