Heavy Light White Falcon


Problem Statement :


Our lazy white falcon finally decided to learn heavy-light decomposition. Her teacher gave an assignment for her to practice this new technique. Please help her by solving this problem.

You are given a tree with N nodes and each node's value is initially 0. The problem asks you to operate the following two types of queries:

"1 u x" assign x to the value of the node .
"2 u v" print the maximum value of the nodes on the unique path between u and v.


Input Format

First line consists of two integers seperated by a space: N and Q.
Following N - 1  lines consisting of two integers denotes the undirectional edges of the tree.
Following Q lines consist of the queries you are asked to operate.

Constraints

1  <=   N , Q , x  <=  50000

It is guaranteed that input denotes a connected tree with N nodes. Nodes are enumerated with 0-based indexing.


Output Format

For each second type of query print single integer in a single line, denoting the asked maximum value.



Solution :



title-img


                            Solution in C :

In   C++   :








#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 50010;

class node {
    
    public :
        int l, r, mx;
        node *left, *right;
    
        void update(int idx, int val) {
            if(l >= r) {
                mx = val;
                return;
            }        
            int mid = (l + r) / 2;
            (idx <= mid ? left : right)->update(idx, val);
            mx = max(left->mx, right->mx);
        }
    
        int query(int a, int b) {
            if(b < l or r < a) return 0;
            if(a <= l and r <= b) return mx;
            return max(left->query(a, b), right->query(a, b));
        }
    
        node(int _l, int _r) : 
            l(_l), r(_r), mx(0), left(NULL), right(NULL) {}
};

node* init(int l, int r) {
    node *p = new node(l, r);
    if(l < r) {
        int mid = (l + r) / 2;
        p->left = init(l, mid);
        p->right = init(mid+1, r);
    }
    return p;
}

vector<int> adj[N];
int n, q;

node* head[N];
vector<int> Path[N];
int sz[N], H[N], P[N], G[N], pos[N];

void dfs_init(int u, int p, int h) {
    P[u] = p;
    H[u] = h;
    sz[u] = 1;
    for(int v : adj[u]) {
        if(v == p) {
            continue;
        }
        dfs_init(v, u, h+1);
        sz[u] += sz[v];
    }
}
void dfs_HLD(int u) {
    Path[u].push_back(u);
    for(int i = 0;i < Path[u].size();i++) {
        int v = Path[u][i];
        G[v] = u;
        pos[v] = i;
        for(int vv : adj[v]) {
            if(vv == P[v]) continue;
            if(2*sz[vv] >= sz[v]) {
                Path[u].push_back(vv);
            }else {
                dfs_HLD(vv);
            }
        }
    }
    head[u] = init(0, Path[u].size() - 1);
}
int query(int u, int v) {
    int ans = 0;
    while(G[u] != G[v]) {
        if(H[G[u]] < H[G[v]]) {
            swap(u, v);
        }
        ans = max(ans, head[G[u]]->query(0, pos[u]));
        u = P[G[u]];
    }
    if(pos[u] > pos[v]) {
        swap(u, v);
    }
    ans = max(ans, head[G[u]]->query(pos[u], pos[v]));
    return ans;
}
int main() {
    
    ios::sync_with_stdio(false);
    cin >> n >> q;
    for(int i = 0;i < n-1;i++) {
        int u, v;
        cin >> u >> v;
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
    
    dfs_init(0, 0, 0);
    dfs_HLD(0);
    
    for(int i = 0;i < q;i++) {
        int type;
        cin >> type;
        if(type == 1) {
            int u, x;
            cin >> u >> x;
            head[G[u]]->update(pos[u], x);
        }else {
            int u, v;
            cin >> u >> v;
            cout << query(u, v) << "\n";
        }
    }
    
    return 0;
}









In   Java  :







import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

 
    // array to store values for each node(vertices)
    static int[] v;
    // array to store connections (edges)
    static ArrayList<Integer>[] e;
    
    // some node with single connection will be tree root
    static int root; 
    // direction to reach root for each node
    static int[] dirToRoot;
    // distance to root
    static int[] distToRoot;
    
    // maximum node value 
    static int totalMax = 0;
    
    static void markRoot(){
        for(int i=0; i<v.length; i++){
            if(e[i].size()==1){
                root = i;
                break;
            }
        }
    }
    
 static void markPathToRoot(int node, int dist, boolean[] visited){
        distToRoot[node] = dist;
        for(Integer item : e[node]){
            int index = item.intValue();
            if(visited[index]==false){
                dirToRoot[index] = node;
                visited[index] = true;
                markPathToRoot(index, dist+1, visited);
            }
        }
    }
    
    static int findMax2(int start, int finish){
        int sDistance = distToRoot[start];
        int fDistance = distToRoot[finish];

        int sIndex = start;
        int fIndex = finish;
        int max = Math.max(v[sIndex], v[fIndex]);
        
        // decrease distance from the one that is more far from root
        while(sDistance>fDistance && max<totalMax){
            sIndex = dirToRoot[sIndex];
            max = max >= v[sIndex] ? max : v[sIndex];
            sDistance--;
        }
        while(fDistance>sDistance && max<totalMax){
            fIndex = dirToRoot[fIndex];
            max = max >= v[fIndex] ? max : v[fIndex];
            fDistance--;
        }

        // run both of them
        while(sIndex!=fIndex){
            fIndex = dirToRoot[fIndex];
            sIndex = dirToRoot[sIndex];
            max = max >= v[fIndex] ? max : v[fIndex];
            max = max >= v[sIndex] ? max : v[sIndex];
            if(sIndex==root || max==totalMax)
                break;
        }
        return Math.max(max, v[sIndex]);
    }
    
    // calculate distance to root node from each node
    static void resetRoot(){
        // direction to the root of tree for each node
        dirToRoot = new int[v.length];
        distToRoot= new int[v.length];
        
        // mark node with only one edge as root
        markRoot();
//        System.out.println("root="+root);
        
        dirToRoot[root] = root;
        boolean[] visited = new boolean[v.length];
        visited[root] = true;
        markPathToRoot(root, 0, visited);
    }
    
    public static void main(String[] args) {
        Reader sc = new Reader();
        sc.init(System.in);
        int N = sc.nextInt();
        int Q = sc.nextInt();
        
        // array to store values for each node(vertices)
        v = new int[N];
        // array to store connections (edges)
        e = new ArrayList[N];

        for(int i=0; i<N; i++)
            e[i] = new ArrayList<Integer>(2);
        
        for(int i=0; i<N-1; i++){
            int v1 = sc.nextInt();
            int v2 = sc.nextInt();
            // add to both because undirectional
            e[v1].add(v2);
            e[v2].add(v1);
        }
        
        resetRoot();
        
        // read queries
        while(Q-->0){
            int type = sc.nextInt();
            if(type==1){
                int node    = sc.nextInt();
                int value   = sc.nextInt();
                v[node] = value;
                totalMax = value > totalMax ? value : totalMax;
            }else{
                int start   = sc.nextInt();
                int finish  = sc.nextInt();
                //search for solution
                System.out.println( findMax2(start, finish) );
            }
        }
    }
    
// code from internet    
/** Class for buffered reading int and double values */
static class Reader {
    static BufferedReader reader;
    static StringTokenizer tokenizer;

    /** call this method to initialize reader for InputStream */
    static void init(InputStream input) {
     reader = new BufferedReader( new InputStreamReader(input) );
        tokenizer = new StringTokenizer("");
    }

    /** get next word */
    static String next() {
        while ( ! tokenizer.hasMoreTokens() ) {
            //TODO add check for eof if necessary
            try{
                tokenizer = new StringTokenizer( reader.readLine() );
            }catch(Exception e){}
        }
        return tokenizer.nextToken();
    }

    static int nextInt() {
        return Integer.parseInt( next() );
    }
	
    static double nextDouble() {
        return Double.parseDouble( next() );
    }
}
}








In   Python3  :







def segtree_init(ary):
   ary = list(ary)
   seg = [ary]
   while len(ary) > 1:
      if len(ary) & 1: ary.append(0)
      ary = [max(ary[i],ary[i+1]) for i in range(0,len(ary),2)]
      seg.append(ary)
   return seg
def segtree_set(seg, i, x):
   ary = seg[0]
   ary[i] = x
   for j in range(1, len(seg)):
      x = max(ary[i], ary[i^1])
      ary = seg[j]
      i >>= 1
      ary[i] = x
def segtree_max(seg, lo, hi):
   m = 0
   j = 0
   while lo < hi:
      ary = seg[j]
      if lo & 1:
         x = ary[lo]
         if x > m: m = x
         lo += 1
      if hi & 1:
         hi -= 1
         x = ary[hi]
         if x > m: m = x
      lo >>= 1
      hi >>= 1
      j += 1
   return m
class heavy_light_node:
   def __init__(self, segtree):
      self.parent = None
      self.pos = -1
      self.segtree = segtree
def build_tree(i, edges, location):
   children = []
   members = [i]
   ed = edges[i]
   while ed:
      for j in range(1,len(ed)):
         child = build_tree(ed[j], edges, location)
         child.pos = len(members) - 1
         children.append(child)
      i = ed[0]
      members.append(i)
      ed = edges[i]
   node = heavy_light_node(segtree_init(0 for j in members))
   for child in children:
      child.parent = node
   for j in range(len(members)):
      location[members[j]] = (node, j)
   return node
def read_tree(N):
   edges = [[] for i in range(N)]
   for i in range(N-1):
      x, y = map(int, input().split())
      edges[x].append(y)
      edges[y].append(x)
   size = [0] * N
   active = [0]
   while active:
      i = active[-1]
      if size[i] == 0:
         size[i] = 1
         for j in edges[i]:
            edges[j].remove(i)
            active.append(j)
      else:
         active.pop()
         edges[i].sort(key=lambda j: -size[j])
         size[i] = 1 + sum(size[j] for j in edges[i])
   location = [None] * N
   build_tree(0, edges, location)
   return location
def root_path(i, location):
   loc = location[i]
   path = [ loc ]
   loc = loc[0]
   while loc.parent != None:
      path.append((loc.parent, loc.pos))
      loc = loc.parent
   path.reverse()
   return path
def max_weight(x, y):
   px = root_path(x, location)
   py = root_path(y, location)
   m = 1
   stop = min(len(px), len(py))
   while m < stop and px[m][0] == py[m][0]: m += 1
   loc, a = px[m-1]
   b = py[m-1][1]
   if a > b: a, b = b, a
   w = segtree_max(loc.segtree, a, b+1)
   for j in range(m, len(px)):
      loc, i = px[j]
      x = segtree_max(loc.segtree, 0, i+1)
      if x > w: w = x
   for j in range(m, len(py)):
      loc, i = py[j]
      x = segtree_max(loc.segtree, 0, i+1)
      if x > w: w = x
   return w
N, Q = map(int, input().split())
location = read_tree(N)
for i in range(Q):
   t, x, y = map(int, input().split())
   if t == 1:
      loc, i = location[x]
      segtree_set(loc.segtree, i, y)
   elif t == 2:
      print(max_weight(x, y))
                        








View More Similar Problems

Lazy White Falcon

White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi

View Solution →

Ticket to Ride

Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game. There are n cities on the map and n - 1 road plans. Each road plan consists of the following: Two cities which can be directly connected by a road. The length of the proposed road. The entire road plan is designed in such a way that if o

View Solution →

Heavy Light White Falcon

Our lazy white falcon finally decided to learn heavy-light decomposition. Her teacher gave an assignment for her to practice this new technique. Please help her by solving this problem. You are given a tree with N nodes and each node's value is initially 0. The problem asks you to operate the following two types of queries: "1 u x" assign x to the value of the node . "2 u v" print the maxim

View Solution →

Number Game on a Tree

Andy and Lily love playing games with numbers and trees. Today they have a tree consisting of n nodes and n -1 edges. Each edge i has an integer weight, wi. Before the game starts, Andy chooses an unordered pair of distinct nodes, ( u , v ), and uses all the edge weights present on the unique path from node u to node v to construct a list of numbers. For example, in the diagram below, Andy

View Solution →

Heavy Light 2 White Falcon

White Falcon was amazed by what she can do with heavy-light decomposition on trees. As a resut, she wants to improve her expertise on heavy-light decomposition. Her teacher gave her an another assignment which requires path updates. As always, White Falcon needs your help with the assignment. You are given a tree with N nodes and each node's value Vi is initially 0. Let's denote the path fr

View Solution →

Library Query

A giant library has just been inaugurated this week. It can be modeled as a sequence of N consecutive shelves with each shelf having some number of books. Now, being the geek that you are, you thought of the following two queries which can be performed on these shelves. Change the number of books in one of the shelves. Obtain the number of books on the shelf having the kth rank within the ra

View Solution →