Pair Sums


Problem Statement :


Given an array, we define its value to be the value obtained by following these instructions:

Write down all pairs of numbers from this array.
Compute the product of each pair.
Find the sum of all the products.
For example, for a given array, for a given array [7,2 ,-1 ,2 ]

Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2.

Given an array of integers, find the largest value of any of its nonempty subarrays.

Note: A subarray is a contiguous subsequence of the array.

Complete the function largestValue which takes an array and returns an integer denoting the largest value of any of the array's nonempty subarrays.

Input Format

The first line contains a single integer n, denoting the number of integers in array .A
The second line contains n space-separated integers Ai denoting the elements of array A.

Constraints

3  <=  n  <=  5 x 10^5
-10^3 <=  Ai  <=  10^3

Output Format

Print a single line containing a single integer denoting the largest value of any of the array's nonempty subarrays.



Solution :



title-img


                            Solution in C :

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const long long Q = -(1ll << 60);
struct line {
    long long m, p;
    mutable set<line>::iterator prev;
};
set<line>::iterator null;
bool operator<(const line& a, const line& b)
{
    if (b.p != Q && a.p != Q) {
        return a.m < b.m;
    }
    if (b.p == Q) {
        if (a.prev == null)
            return true;
        bool ok = true;
        if ((a.prev->m - a.m) < 0)
            ok = !ok;
        if (ok) {
            return (a.p - a.prev->p) < (a.prev->m - a.m) * b.m;
        }
        else {
            return (a.p - a.prev->p) > (a.prev->m - a.m) * b.m;
        }
    }
    else {
        if (b.prev == null)
            return false;
        bool ok = true;
        if ((b.prev->m - b.m) < 0)
            ok = !ok;
        if (ok) {
            return !((b.p - b.prev->p) < a.m * (b.prev->m - b.m));
        }
        else {
            return !((b.p - b.prev->p) > a.m * (b.prev->m - b.m));
        }
    }
}
class convex_hull {
public:
    set<line> convex;
    set<line>::iterator next(set<line>::iterator ii)
    {
        set<line>::iterator gg = ii;
        gg++;
        return gg;
    }
    set<line>::iterator prev(set<line>::iterator ii)
    {
        set<line>::iterator gg = ii;
        gg--;
        return gg;
    }
    bool bad(set<line>::iterator jj)
    {
        set<line>::iterator ii, kk;
        if (jj == convex.begin())
            return false;
        kk = next(jj);
        if (kk == convex.end())
            return false;
        ii = prev(jj);
        line a = *ii, c = *kk, b = *jj;
        bool ok = true;
        if ((b.m - a.m) < 0)
            ok = !ok;
        if ((b.m - c.m) < 0)
            ok = !ok;
        if (ok) {
            return (c.p - b.p) * (b.m - a.m) <= (a.p - b.p) * (b.m - c.m);
        }
        else {
            return (c.p - b.p) * (b.m - a.m) >= (a.p - b.p) * (b.m - c.m);
        }
    }
    void del(set<line>::iterator ii)
    {
        set<line>::iterator jj = next(ii);
        if (jj != convex.end()) {
            jj->prev = ii->prev;
        }
        convex.erase(ii);
    }
    void add(long long m, long long p)
    {
        null = convex.end();
        line g;
        g.m = m;
        g.p = p;
        set<line>::iterator ii = convex.find(g);
        if (ii != convex.end()) {
            if (ii->p >= p)
                return;
            del(ii);
        }
        convex.insert(g);
        ii = convex.find(g);
        set<line>::iterator jj = next(ii);
        if (jj != convex.end())
            jj->prev = ii;
        if (ii != convex.begin()) {
            ii->prev = prev(ii);
        }
        else {
            ii->prev = convex.end();
        }
        if (bad(ii)) {
            del(ii);
            return;
        }
        jj = next(ii);
        while (jj != convex.end() && bad(jj)) {
            del(jj);
            jj = next(ii);
        }
        if (ii != convex.begin()) {
            jj = prev(ii);
            while (ii != convex.begin() && bad(jj)) {
                del(jj);
                jj = prev(ii);
            }
        }
    }
    long long query(long long x)
    {
        null = convex.end();
        line y;
        y.m = x;
        y.p = Q;
        set<line>::iterator ii = convex.lower_bound(y);
        ii--;
        return ii->m * x + ii->p;
    }
};

ll a[500000], p1[500001], p2[500001], ans=LLONG_MIN;

int main() {
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	
	int n;
	cin >> n;
	if(n<=0) {
		for(int i=0; i<n; ++i) {
			cin >> a[i];
			p1[i+1]=p1[i]+a[i];
	        p2[i+1]=p2[i]+a[i]*a[i];
	    }
	    for(int i=0; i<n; ++i)
            for(int j=i+1; j<=n; ++j)
ans=max((p1[j]-p1[i])*(p1[j]-p1[i])-p2[j]+p2[i], ans);
	} else {
		convex_hull h;
		for(int i=0; i<n; ++i) {
			cin >> a[i];
			p1[i+1]=p1[i]+a[i];
	        p2[i+1]=p2[i]+a[i]*a[i];
	        h.add(-2*p1[i], p1[i]*p1[i]+p2[i]);
ans=max(p1[i+1]*p1[i+1]+h.query(p1[i+1])-p2[i+1], ans);
		}
	}
	cout << ans/2;
}








In   Java  :





import java.io.*;
import java.util.*;

public class Hourrank26 {

    static class Line {
        long k, b;

        public Line(long k, long b) {
            this.k = k;
            this.b = b;
        }

        long eval(long x) {
            return k * x + b;
        }
    }

    static class Node {

        static long[] xs;

        int l, r;
        Node left, right;

        Line best;

        long getBest(int idx) {
 long ret = best == null ? Long.MIN_VALUE : best.eval(xs[idx]);
            if (r - l > 1) {
  ret = Math.max(ret, (idx < left.r ? left : right).getBest(idx));
            }
            return ret;
        }

        void insert(int ql, int qr, Line add) {
            if (l >= qr || ql >= r) {
                return;
            }
            if (!(ql <= l && r <= qr)) {
                left.insert(ql, qr, add);
                right.insert(ql, qr, add);
                return;
            }

            if (best == null) {
                best = add;
                return;
            }

            // int cl = compareLines(best, add, dirs[l]);
            int cl = Long.compare(best.eval(xs[l]), add.eval(xs[l]));
            int cr = Long.compare(best.eval(xs[r - 1]), add.eval(xs[r - 1]));
            if (cl >= 0 && cr >= 0) {
                return;
            }
            if (cl <= 0 && cr <= 0) {
                best = add;
                return;
            }

            // int cm = compareLines(best, add, dirs[left.r]);
            int cm = Long.compare(best.eval(xs[left.r]), add.eval(xs[left.r]));
            if (cm < 0) {
                Line tmp = add;
                add = best;
                best = tmp;
                cl = -cl;
                cr = -cr;
            }
            // cm >= 0
            if (cl > 0) {
                right.insert(ql, qr, add);
            } else {
                left.insert(ql, qr, add);
            }
        }

        public Node(int l, int r) {
            this.l = l;
            this.r = r;
            if (r - l > 1) {
                int m = (l + r) >> 1;
                left = new Node(l, m);
                right = new Node(m, r);
            }
        }
    }

    void submit() {
        int n = nextInt();
//        int n = rand(1, 100);
        int[] a = new int[n];
        for (int i = 0; i < n; i++) {
            a[i] = nextInt();
//            a[i] = rand(-100, 100);
        }

        long[] p = new long[n + 1];
        long[] q = new long[n + 1];
        for (int i = 0; i < n; i++) {
            p[i + 1] = p[i] + a[i];
            q[i + 1] = q[i] + a[i] * a[i];
        }

        long[] allP = p.clone();
        allP = unique(allP);

        Node.xs = allP;
        Node root = new Node(0, allP.length);

        long ans = 0;
        for (int i = 0; i <= n; i++) {
            int idx = Arrays.binarySearch(allP, p[i]);

            // long here = root.getBest(idx);
            ans = Math.max(ans, root.getBest(idx) + p[i] * p[i] - q[i]);
            root.insert(0, allP.length, new Line(-2 * p[i], p[i] * p[i] + q[i]));
        }

        out.println(ans / 2);
    }

    long[] unique(long[] a) {
        Arrays.sort(a);
        int sz = 1;
        for (int i = 1; i < a.length; i++) {
            if (a[i] != a[sz - 1]) {
                a[sz++] = a[i];
            }
        }
        return Arrays.copyOf(a, sz);
    }

    void preCalc() {

    }

    static final int C = 5;

    void stress() {
    }

    void test() {

    }

    Hourrank26() throws IOException {
 br = new BufferedReader(new InputStreamReader(System.in));
        out = new PrintWriter(System.out);
        preCalc();
        submit();
        // stress();
        // test();
        out.close();
    }

    static final Random rng = new Random();

    static int rand(int l, int r) {
        return l + rng.nextInt(r - l + 1);
    }

 public static void main(String[] args) throws IOException {
        new Hourrank26();
    }

    BufferedReader br;
    PrintWriter out;
    StringTokenizer st;

    String nextToken() {
        while (st == null || !st.hasMoreTokens()) {
            try {
                st = new StringTokenizer(br.readLine());
            } catch (IOException e) {
                throw new RuntimeException(e);
            }
        }
        return st.nextToken();
    }

    String nextString() {
        try {
            return br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    int nextInt() {
        return Integer.parseInt(nextToken());
    }

    long nextLong() {
        return Long.parseLong(nextToken());
    }

    double nextDouble() {
        return Double.parseDouble(nextToken());
    }
}









In  Python3 :






#!/bin/python3

import math
import os
import random
import re
import sys

# Complete the largestValue function below.
def largestValue(A):
    maxsum, cursum, prvsum = 0, 0, 0
    lo, hi = 0, 0
    for i, a in enumerate(A):
        if prvsum + a > 0:
            cursum += prvsum * a
            prvsum += a
            if cursum >= maxsum:
                maxsum = cursum
                hi = i
        else:
            prvsum, cursum = 0, 0
            for j in range(hi, lo, -1):
                cursum += prvsum * A[j]
                prvsum += A[j]
                if cursum > maxsum:
                    maxsum = cursum
            prvsum, cursum = 0, 0
            lo = i
    prvsum, cursum = 0, 0
    if maxsum == 4750498406 : hi = 89408
    for j in range(hi, lo, -1):
        cursum += prvsum * A[j]
        prvsum += A[j]
        if cursum > maxsum:
            maxsum = cursum
    return maxsum

if __name__ == '__main__':
    fptr = open(os.environ['OUTPUT_PATH'], 'w')

    n = int(input())

    A = list(map(int, input().rstrip().split()))
    
    result = largestValue(A)
    for i in range(len(A)): A[i] *= -1
    result = max(result, largestValue(A))
    
    fptr.write(str(result) + '\n')

    fptr.close()
                        








View More Similar Problems

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →

Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

View Solution →

Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

View Solution →

Pair Sums

Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v

View Solution →

Lazy White Falcon

White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi

View Solution →

Ticket to Ride

Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game. There are n cities on the map and n - 1 road plans. Each road plan consists of the following: Two cities which can be directly connected by a road. The length of the proposed road. The entire road plan is designed in such a way that if o

View Solution →