Find the permutation


Problem Statement :


Consider a permutation, , of integers from  to . Let's determine the  of  to be the minimum absolute difference between any  consecutive integers in :

Generate a lexicographically sorted list of all permutations of length  having a maximal distance between all permutations of the same length. Print the lexicographically  permutation.

Input Format

The first line contains an integer, t (the number of test cases).

The t subsequent lines each contain two space-separated integers,  (the permutation length) and  (the 1-based index in the list of permutations having a maximal distance), respectively. The  line corresponds to the  test case.

Note: It is guaranteed that the sum of all ni  does not exceed 10^6.

Constraints

1  <=  t  <=  10
1  <=  ni  <=  10^6
1  <=  ki  <= 10^18

Output Format

For each test case: if the list of permutations having maximal distance has at least k elements, print the kth permutation as sequential (i.e.: from 1 to n ) space-separated integers on a new line; otherwise, print -1.



Solution :



title-img


                            Solution in C :

In   C++  :






#include <algorithm>
#include <assert.h>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include <unordered_set>

using namespace std;

static const uint64_t one = 1;

void SolveSimple(uint64_t n, uint64_t k)
{
    assert((n & 1) == 0);
    if (k > 2)
    {
        cout << -1 << endl;
    }
    else
    {
        for (uint64_t i = 0; i < n / 2; ++i)
        {
            if (k == 1)
                cout << (n / 2 - i) << " " << (n - i) << " ";
            else
                cout << (n / 2 + i + 1) << " " << (i + 1) << " ";
        }
        cout << endl;
    }
}

class Solution
{
public:
    vector<uint64_t> solution;
    uint64_t n;
    uint64_t k;

    int AdjustPlace()
    {
        uint64_t t = k;
        uint64_t n0 = 2;
        if (t < n0)
            return 1;
        uint64_t s = n0;
        t -= s;
        for (uint64_t i = 0; i < n / 2 - 1; ++i)
        {
            uint64_t p2 = (one << i);
            if (t < (s + p2))
                return 1;
            t -= (s + p2);
            s = 2 * s + p2;
        }
        uint64_t p2 = (one << (n / 2));
        if (t < p2)
        {
            k = t;
            return 2;
        }
        t -= p2;
        if (t < s)
        {
            k = s - 1 - t;
            return 3;
        }
        return -1;
    }

    void Inverse()
    {
        for (size_t i = 0; i < solution.size(); ++i)
        {
            solution[i] = n + 1 - solution[i];
        }
    }

    void Solve1()
    {
        vector<int> used(n + 2, 0);
        uint64_t p = 0;
        uint64_t mi = n / 2;
        for (;;)
        {
            if (k == 0)
            {
                solution[p++] = 1;
                for (size_t i = n / 2 + 1; i > 1; --i)
                {
                    if (!used[i])
                    {
                        solution[p++] = i;
                        solution[p++] = i + n / 2;
                    }
                }
                return;
            }
            if (k == 1)
            {
                size_t i1 = 1;
                size_t i2 = n / 2 + 2;
                for (; p < n - 1; )
                {
                    for (; used[i1]; ++i1);
                    for (; used[i2]; ++i2);
                    solution[p++] = i1++;
                    solution[p++] = i2++;
                }
                solution[p++] = n / 2 + 1;
                return;
            }
            uint64_t s = 2;
            k -= s;
            for (uint64_t i = 0; ; ++i)
            {
                if (k < s)
                {
                    solution[p++] = i + 2;
                    solution[p++] = i + 2 + n / 2;
                    used[i + 2] = 1;
                    used[i + 2 + n / 2] = 1;
                    break;
                }
                k -= s;
                size_t p2 = (one << i);
                if (k < p2)
                {
                    size_t i1 = i + 2;
                    size_t i2 = n / 2 + i1 + 1;
                    for (; ;)
                    {
                        for (; used[i1]; ++i1);
                        if (i1 == (n / 2 + 1))
                        {
                            break;
                        }
                        for (; used[i2]; ++i2);
                        solution[p++] = i1++;
                        solution[p++] = i2++;
                    }
                    solution[p++] = i1;
                    solution[p++] = 1;
                    Solve2I(i);
                    return;
                }
                k -= p2;
                s = 2 * s + p2;
            }
        }
    }

    void Solve2I(uint64_t r)
    {
        assert(k < (one << r));
        uint64_t sf = n - 2 * r - 1;
        uint64_t sb = n - 1;
        uint64_t s2 = 2;
        for (uint64_t i = 0; i < r; ++i)
        {
            uint64_t p2 = (one << (r - i - 1));
            if (k < p2)
            {
                solution[sf] = n / 2 + s2 + i;
                solution[sf + 1] = s2 + i;
                sf += 2;
            }
            else
            {
                k -= p2;
                solution[sb] = n / 2 + s2 + i;
                solution[sb - 1] = s2 + i;
                sb -= 2;
            }
        }
        assert(sf == sb);
        solution[sf] = n / 2 + s2 + r;
    }

    void Solve2()
    {
        uint64_t m = (one << (n / 2 - 1));
        if (k >= m)
        {
            k = 2 * m - 1 - k;
            Solve2();
            Inverse();
            return;
        }
        solution[0] = (n / 2) + 1;
        solution[1] = 1;
        Solve2I(n/2 - 1);
    }

    bool Solve(uint64_t _n, uint64_t _k)
    {
        n = _n;
k = _k - 1;
int status = AdjustPlace();
if (status == -1)
return false;
solution.resize(n);
if (status == 1)
Solve1();
if (status == 2)
Solve2();
if (status == 3)
{
Solve1();
Inverse();
}
return true;
}
};

class STest
{
public:
uint64_t count;
Solution S;

void PrintAllI(vector<int>& v, int k, int min_diff, vector<bool>& av)
{
if (k == v.size())
{
++count;
S.Solve(v.size(), count);
{
for (int i = 0; i < k; ++i)
{
cout << v[i] + 1 << " ";
}
cout << endl;
for (int i = 0; i < k; ++i)
{
cout << S.solution[i] << " ";
}
cout << endl;
}
}
else
{
int j = (k > 0) ? v[k - 1] : -min_diff;
for (int i = 0; i < int(av.size()); ++i)
{
if (av[i] && (abs(i - j) >= min_diff))
{
v[k] = i;
av[i] = false;
PrintAllI(v, k + 1, min_diff, av);
av[i] = true;
}
}
}
}

void PrintAll(int n)
{
count = 0;
vector<int> v(n, -1);
vector<bool> av(n, true);

PrintAllI(v, 0, n / 2, av);
}
};

void SSolve(uint64_t n, uint64_t k)
{
if (n == 1)
{
if (k == 1)
{
cout << 1 << endl;
}
else
{
cout << -1 << endl;
}
return;
}
Solution S;
if (S.Solve(n, k))
{
for (size_t i = 0; i < S.solution.size(); ++i)
{
cout << S.solution[i] << " ";
}
cout << endl;
}
else
{
cout << -1 << endl;
}
}

int main()
{
//STest t;
//t.PrintAll(11);
int T;
cin >> T;
for (; T; --T)
{
uint64_t n, k;
cin >> n >> k;
if (n & 1) 
{
SSolve(n, k);
}
else
{
SolveSimple(n, k);
}
}
return 0;
}







In   Java  :






import java.io.*;
import java.util.*;

public class Solution {

static String s = " ";
static long[] countSumms = new long[] { 
0, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632,
147456, 311296, 655360, 1376256, 2883584, 6029312, 12582912, 26214400,
54525952, 113246208, 234881024, 486539264, 1006632960, 2080374784,
4294967296l, 8858370048l, 18253611008l, 37580963840l, 77309411328l,
158913789952l, 326417514496l, 670014898176l, 1374389534720l, 2817498546176l,
5772436045824l, 11819749998592l, 24189255811072l, 49478023249920l,
101155069755392l, 206708186021888l, 422212465065984l, 862017116176384l,
1759218604441600l, 3588805953060864l, 7318349394477056l, 14918173765664768l,
30399297484750848l, 61924494876344320l, 126100789566373888l, 256705178760118272l,
522417556774977536l };
static int[] NOT_FOUND = new int[] { -1 };

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for(int i = 0; i < t; i++) {
int n = sc.nextInt();
long k = sc.nextLong();
int[] res = solve(n, k);
StringBuilder b = new StringBuilder(countString(n));
for (int j = 0; j < res.length; j++) {
b.append(res[j]).append(s);
}
System.out.println(b.toString());
}
sc.close();
}
static int[] solve(int n, long k) {

if(n == 1) {
if(k == 1) {
return new int[] { 1 };
}
return NOT_FOUND;
}

int min = n >> 1;

/* even n */
if ((n & 1) == 0) {
if (k == 1) {
int[] ret = new int[n];
int ix = 0;
for (int i = 0; i < min; i++) {
ret[ix++] = min - i;
ret[ix++] = n - i;
}
return ret;
} else if (k == 2) {
int[] ret = new int[n];
int ix = 0;
for (int i = 0; i < min; i++) {
ret[ix++] = min + i + 1;
ret[ix++] = i + 1;
}
return ret;
} else {
return NOT_FOUND;
}
}
/* odd n */
long midCount = 1L << min;
boolean flip = false;
boolean middle = false;
int countSummIx = min;
long countsSumm;

k--;
/* k is before mid section */
if (countSumms.length < countSummIx || k < (
    countsSumm = countSumms[countSummIx])) {
}
/* k is inside of mid section */
else if (k < (
countsSumm = countSumms[countSummIx]) + midCount) {
k = k - countsSumm;
middle = true;
}
/* k is after mid section but before end of last side */
else if (k < (countsSumm << 1) + midCount) {
k = Math.abs(k - (countsSumm << 1) - midCount + 1);
flip = true;
}
/* k out of range */
else {
return NOT_FOUND;
}

int[] arr = new int[n];
if (middle) {
arr[0] = min + 1;
arr[1] = 1;
if (k >= midCount >> 1) {
k = midCount - 1 - k;
flip = true;
}
solveRadius(n, k, min - 1, arr, min);
if (flip) {
int n_1 = n + 1;
for (int i = 0; i < arr.length; i++) {
arr[i] = n_1 - arr[i];
}
}
return arr;
}
solveSide(arr, n, k, min);
if (flip) {
int n_1 = n + 1;
for (int i = 0; i < arr.length; i++) {
arr[i] = n_1 - arr[i];
}
}
return arr;
}
static void solveSide(int[] arr, int n,
 long k, int min) {
boolean[] cache = new boolean[n + 1];
int ix = 0;
outer:while (true) {
if (k == 0) {
arr[ix++] = 1;
for (int i = min + 1; i > 1; i--) {
if (!cache[i]) {
arr[ix++] = i;
arr[ix++] = i + min;
}
}
break;
}
if (k == 1) {
for (int left = 1, right = min + 2, n_1 = n - 1; ix < n_1;) {
while (cache[left])    left++;
while (cache[right]) right++;
arr[ix++] = left++;
arr[ix++] = right++;
}
arr[ix++] = min + 1;
break;
}
k -= countSumms[1];
long next = 1L;
for (int i = 0, j = 2;; ++i, j++, next <<= 1) {
if (k < countSumms[i + 1]) {
arr[ix++] = j;
arr[ix++] = j + min;
cache[j] = cache[j + min] = true;
break;
}
k -= countSumms[i + 1];
if (k < next) {
int left = j;
int right = min + left + 1;
while (true) {
while (cache[left])    left++;
if (left == min + 1) {
break;
}
while (cache[right]) right++;
arr[ix++] = left++;
arr[ix++] = right++;
}
arr[ix++] = left;
arr[ix++] = 1;
solveRadius(n, k, i, arr, min);
break outer;
}
k -= next;
}
}
}
static int countString(int n) {
int ret = 0;
if(n < 10) { return n << 1; }
ret += 18;
if(n < 100) { ret += (n - 9) * 3; return ret;}
ret += 270;
if(n < 1000) { ret += (n - 99) << 2; return ret;}
ret += 3600;
if(n < 10000) { ret += (n - 999) * 5; return ret;}
ret += 45000;
if(n < 100000) { ret += (n - 9999) * 6; return ret;}
ret += 540000;
ret += (n - 99999) * 7;
return ret;
}
static void solveRadius(int n, long k, 
int radius, int[] arr, int min) {
int left = n - (radius << 1) - 1;
int right = n - 1;
int min_2 = min + 2;
for (int i = 0; i < radius; ++i) {
long next = (1L << (radius - (i + 1)));
if (k < next) {
arr[left] = min_2 + i;
arr[left + 1] = 2 + i;
left += 2;
} else {
arr[right] = min_2 + i;
arr[right - 1] = 2 + i;
right -= 2;
k -= next;
}
}
arr[left] = min_2 + radius;
}
}








In   C  :






#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

static const unsigned long long int one = 1;
static unsigned long long int* solution;
unsigned long long int n, k;

void solve2I(unsigned long long int r)
{
assert(k < (one << r));
unsigned long long int sf = n - 2 * r - 1;
unsigned long long int sb = n - 1;
unsigned long long int s2 = 2;
for (unsigned long long int i = 0; i < r; ++i)
{
unsigned long long int p2 = (one << (r - i - 1));
if (k < p2)
{
solution[sf] = n / 2 + s2 + i;
solution[sf + 1] = s2 + i;
sf += 2;
}
else
{
k -= p2;
solution[sb] = n / 2 + s2 + i;
solution[sb - 1] = s2 + i;
sb -= 2;
}
}
assert(sf == sb);
solution[sf] = n / 2 + s2 + r;
}

void solveTwo()
{
unsigned long long int m = (one << (n / 2 - 1));
if (k >= m)
{
k = 2 * m - 1 - k;
solveTwo();
for (size_t i = 0; i < n; ++i)
{
solution[i] = n + 1 - solution[i];
}
return;
}
solution[0] = (n / 2) + 1;
solution[1] = 1;
solve2I(n/2 - 1);
}

void SolveOne()
{
unsigned long long int* used = (
    unsigned long long int*)malloc((n + 2) * sizeof(
        unsigned long long int));
for(unsigned long long int i=0;i<n+2;i++){
used[i] = 0;
}
unsigned long long int p = 0;
for (;;)
{
if (k == 0)
{
solution[p++] = 1;
for (size_t i = n / 2 + 1; i > 1; --i)
{
if (!used[i])
{
solution[p++] = i;
solution[p++] = i + n / 2;
}
}
return;
}
if (k == 1)
{
size_t i1 = 1;
size_t i2 = n / 2 + 2;
for (; p < n - 1; )
{
for (; used[i1]; ++i1);
for (; used[i2]; ++i2);
solution[p++] = i1++;
solution[p++] = i2++;
}
solution[p++] = n / 2 + 1;
return;
}
unsigned long long int s = 2;
k -= s;
for (unsigned long long int i = 0; ; ++i)
{
if (k < s)
{
solution[p++] = i + 2;
solution[p++] = i + 2 + n / 2;
used[i + 2] = 1;
used[i + 2 + n / 2] = 1;
break;
}
k -= s;
size_t p2 = (one << i);
if (k < p2)
{
size_t i1 = i + 2;
size_t i2 = n / 2 + i1 + 1;
for (; ;)
{
for (; used[i1]; ++i1);
if (i1 == (n / 2 + 1))
{
break;
}
for (; used[i2]; ++i2);
solution[p++] = i1++;
solution[p++] = i2++;
}
solution[p++] = i1;
solution[p++] = 1;
solve2I(i);
return;
}
k -= p2;
s = 2 * s + p2;
}
}
}

int AdjustPlace()
{
unsigned long long int t = k;
unsigned long long int n0 = 2;
if (t < n0)
return 1;
unsigned long long int s = n0;
t -= s;
for (unsigned long long int i = 0; i < n / 2 - 1; ++i)
{
unsigned long long int p2 = (one << i);
if (t < (s + p2))
return 1;
t -= (s + p2);
s = 2 * s + p2;
}
unsigned long long int p2 = (one << (n / 2));
if (t < p2)
{
k = t;
return 2;
}
t -= p2;
if (t < s)
{
k = s - 1 - t;
return 3;
}
return -1;
}

unsigned long long int* solve(){
unsigned long long int* v;
if(n%2==1){
if(n==1) {
if (k == 1) {
v = (unsigned long long int*)malloc(
    1 * sizeof(unsigned long long int));
v[0] = 1;
return v;
} else {
v = NULL;
return v;
}
}
k--;
int status = AdjustPlace();
if (status == -1) {
v = NULL;
return v;
}
solution = (unsigned long long int*)malloc(
    n * sizeof(unsigned long long int));
if (status == 1)
SolveOne();
if (status == 2)
solveTwo();
if (status == 3)
{
SolveOne();
for (unsigned long long int i = 0; i < n; ++i)
{
solution[i] = n + 1 - solution[i];
}
}
return solution;
}
else {
assert((n & 1) == 0);
if (k > 2)
{
v = NULL;
return v;
}
else
{
unsigned long long int j = 0;
v = (unsigned long long int*)malloc(
    n * sizeof(unsigned long long int));
for (unsigned long long int i = 0; i < n / 2; ++i)
{
if (k == 1) {
v[j++] = (n/2-i);
v[j++] = (n-i);
}
else {
v[j++] = (n / 2 + i + 1);
v[j++] = (i + 1);
}
}
}
}
return v;
}

void print(unsigned long long int* v){
for(unsigned long long int i=0;i<n-1;i++)
printf("%lld ", v[i]);
printf("%lld\n", v[n-1]);
}
int main() {
unsigned long long int t;
scanf("%lld", &t);
while(t--){
scanf("%lld %lld", &n, &k);
unsigned long long int* t = solve();
if(t == NULL){
printf("%i\n", -1);
} else {
print(t);
}
}
return 0;
}








In Python3 :






from bisect import *
import collections
from time import time
import random

popdistr = collections.Counter()

def naive(n, k):
    def gen(perm, nums):
        if len(perm) == n:
            perms.append(perm)
        for i in sorted(nums):
            if abs(perm[-1] - i) >= mindist:
                gen(perm + [i], nums - {i})
    perms = []
    mindist = n // 2
    for i in range(n):
        gen([i], set(range(n)) - {i})
    return perms[k] if k < len(perms) else -1

if 0:
    for k in range(7):
        print(naive(3, k))
    input()


def smart(n, k):
    if n < 5:
        return naive(n, k)
    
    half = n // 2
    h = half
    H = half + 1

    # Even n cases
    if not n & 1:
        if k > 1:
            return -1
        perm = [None] * n
        if k == 0:
            # 4 9 3 8 2 7 1 6 0 5
            perm[::2] = range(h-1, -1, -1)
            perm[1::2] = range(n-1, h-1, -1)
        else:
            # 5 0 6 1 7 2 8 3 9 4
            perm[::2] = range(h, n)
            perm[1::2] = range(h)
        return perm

    low = (h + 3) << (h - 2)
    #low = 2 if n == 3 else (h + 3) << (h - 2)
    lowmid = 1 << (h - 1)
    #print(k, low, lowmid)
    if k >= (low + lowmid) * 2:
        return -1
    if k >= low + lowmid:
        merp = smart(n, (low + lowmid) * 2 - 1 - k)
        if merp == -2:
            return merp
        return [n-1 - m for m in merp]
    if k >= low:
        return binary(list(range(n)), k-low, h)
    
    offset = [2]
    for i in range(half - 1):
        offset.append(offset[-1] * 2 + (1 << i))
        if offset[-1] > 10**30:
            break
    offset.append(offset[-1] + (1 << (i + 1)))
    offset.append(0)  # offset[-1] = 0
    #print(offset)

    nums = list(range(n))
    perm = []
    pops = 0
    while True:

        # Cases k=0, k=1
        if k < 2:
            # n=11: 0 5 10 4 9 3 8 2 7 1 6
            #       0 6 1 7 2 8 3 9 4 10 5
            add = h + k
            return perm + [nums[i*add % n] for i in range(n)]

        i = bisect(offset, k)
        k -= offset[i-1]

        #print(offset, i, k, end=' ... ')
        
        # Binary cases
        if k >= offset[i-1]:# or i == h:
            return perm + binary(nums, k - offset[i-1], i)

        # Ugly cases
        perm += nums.pop(i), nums.pop(i+h-1)
        n -= 2
        half -= 1
        h -= 1
        H -= 1

        if pops:
            popdistr[pops] -= 1
        pops += 1
        popdistr[pops] += 1

def binary(nums, k, i):
    n = len(nums)
    half = n // 2
    H = half + 1
    perm = [None] * n
    ks, testbit = bin(k)[:1:-1], half - 1
    left, right = 0, n - 1
    for m in range(i, i+half):
        if testbit < len(ks) and ks[testbit] == '1':
            perm[right] = nums[m]
            perm[right-1] = nums[(m + H) % n]
            right -= 2
        else:
            perm[left] = nums[m]
            perm[left+1] = nums[(m + H) % n]
            left += 2
        testbit -= 1
    perm[left] = nums[i + half]
    return perm

if 1:
    t = int(input())
    for _ in range(t):
        n, k = map(int, input().split())
        perm = smart(n, k-1)
        print(-1 if perm == -1 else ' '.join(str(p+1) for p in perm))
                        








View More Similar Problems

Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

View Solution →

Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

View Solution →

Pair Sums

Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v

View Solution →

Lazy White Falcon

White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi

View Solution →

Ticket to Ride

Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game. There are n cities on the map and n - 1 road plans. Each road plan consists of the following: Two cities which can be directly connected by a road. The length of the proposed road. The entire road plan is designed in such a way that if o

View Solution →

Heavy Light White Falcon

Our lazy white falcon finally decided to learn heavy-light decomposition. Her teacher gave an assignment for her to practice this new technique. Please help her by solving this problem. You are given a tree with N nodes and each node's value is initially 0. The problem asks you to operate the following two types of queries: "1 u x" assign x to the value of the node . "2 u v" print the maxim

View Solution →