Fairy Chess
Problem Statement :
Let's play Fairy Chess! You have an n*n chessboard. An s-leaper is a chess piece which can move from some square (x0,y0) to some square (x1,y1) if abs(x0-x1) + abs(y0-y1) <= s; however, its movements are restricted to up, down, left, and right within the confines of the chessboard, meaning that diagonal moves are not allowed. In addition, the leaper cannot leap to any square that is occupied by a pawn. Given the layout of the chessboard, can you determine the number of ways a leaper can move m times within the chessboard? Note: abs(x) refers to the absolute value of some integer, x. Input Format The first line contains an integer, q, denoting the number of queries. Each query is described as follows: 1.The first line contains three space-separated integers denoting n, m, and s, respectively. 2.Each line i of the n subsequent lines contains n characters. The jth character in the ith line describes the contents of square (i,j) according to the following key: . indicates the location is empty. P indicates the location is occupied by a pawn. L indicates the location of the leaper. Constraints 1 <= q <= 10 1 <= m <= 200 There will be exactly one L character on the chessboard. The s-leaper can move up (), down (), left (), and right () within the confines of the chessboard. It cannot move diagonally.
Solution :
Solution in C :
In C++ :
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cassert>
using namespace std;
const int P = 1000000007;
const int maxN = 200;
const int maxS = 200;
int TN, TC;
int N, M, S, K;
char tmp[maxN + 1];
char board[maxN][maxN];
int sx, sy;
int num[maxN][maxN];
int sum[2][maxN][maxN];
#define PLUS(x, v) \
{ \
x += v; \
if (x >= P) \
x -= P; \
}
#define MINUS(x, v) \
{ \
x -= v; \
if (x < 0) \
x += P; \
}
void find_leaper (int &px, int &py)
{
for (int x = 0; x < N; ++x)
for (int y = 0; y < N; ++y)
if (board[x][y] == 'L')
{
px = x;
py = y;
return;
}
}
void coor_trans (int x, int y, int &tx, int &ty, int &s)
{
if (!((x + y) & 1))
{
s = 0;
tx = (x + y) >> 1;
ty = ((y - x) >> 1) + ((N - 1) >> 1);
}
else
{
s = 1;
tx = (x + y) >> 1;
ty = ((y - x + 1) >> 1) + ((N - 2) >> 1);
}
}
int square_sum (int x, int y, int h)
{
int tx, ty, s;
coor_trans(x, y, tx, ty, s);
int tx2 = tx - h, ty2 = ty - h;
if (tx >= N)
tx = N - 1;
if (ty >= N)
ty = N - 1;
if (tx2 >= N)
tx2 = N - 1;
if (ty2 >= N)
ty2 = N - 1;
int r = sum[s][tx][ty];
if (tx2 >= 0)
MINUS(r, sum[s][tx2][ty]);
if (ty2 >= 0)
MINUS(r, sum[s][tx][ty2]);
if (tx2 >= 0 && ty2 >= 0)
PLUS(r, sum[s][tx2][ty2]);
return r;
}
int solve ()
{
for (int x = 0; x < N; ++x)
for (int y = 0; y < N; ++y)
if (board[x][y] != 'P')
num[x][y] = 1;
else
num[x][y] = 0;
for (int u = 0; u < M; ++u)
{
memset(sum, 0, sizeof(sum));
for (int x = 0; x < N; ++x)
for (int y = 0; y < N; ++y)
if (board[x][y] != 'P')
{
int tx, ty, s;
coor_trans(x, y, tx, ty, s);
sum[s][tx][ty] = num[x][y];
}
for (int s = 0; s < 2; ++s)
{
for (int y = 1; y < N; ++y)
PLUS(sum[s][0][y], sum[s][0][y - 1]);
for (int x = 1; x < N; ++x)
{
PLUS(sum[s][x][0], sum[s][x - 1][0]);
for (int y = 1; y < N; ++y)
{
int &r = sum[s][x][y];
PLUS(r, sum[s][x - 1][y]);
PLUS(r, sum[s][x][y - 1]);
MINUS(r, sum[s][x - 1][y - 1]);
}
}
}
for (int x = 0; x < N; ++x)
for (int y = 0; y < N; ++y)
if (board[x][y] != 'P')
{
num[x][y] = square_sum(x, y + S, S + 1) + square_sum(x, y + S - 1, S);
if (num[x][y] >= P)
num[x][y] -= P;
}
}
return num[sx][sy];
}
int main ()
{
scanf("%d", &TN);
for (TC = 1; TC <= TN; ++TC)
{
scanf("%d%d%d ", &N, &M, &S);
K = N + (S + 1) / 2;
for (int x = 0; x < N; ++x)
{
gets(tmp);
memcpy(board[x], tmp, N);
}
find_leaper(sx, sy);
int ans = solve();
printf("%d\n", ans);
}
}
In Java :
import java.util.Scanner;
public class Solution {
private static final int MOD_PRIME = 1000000007;
public static int addModulo(int x, int y) {
int s = x + y;
if (s >= MOD_PRIME)
s -= MOD_PRIME;
return s;
}
public static int subtractModulo(int x, int y) {
int d = x - y;
if (d < 0)
d += MOD_PRIME;
return d;
}
public static int query(int[][] sum, int x, int y, int s) {
int n = sum.length;
int rx = n / 2 + x - y;
int ry = x + y + 1;
int high_x = Math.min(rx + s, n - 1);
int low_x = Math.max(rx - s, 1);
int high_y = Math.min(ry + s, n - 1);
int low_y = Math.max(ry - s, 1);
int pos = addModulo(sum[high_x][high_y], sum[low_x - 1][low_y - 1]);
int neg = addModulo(sum[high_x][low_y - 1], sum[low_x - 1][high_y]);
return subtractModulo(pos, neg);
}
public static void createSumTable(int[][] sum, int[][] matrix) {
for (int i = 0; i < matrix.length; i++) {
int partialSum = 0;
for (int j = 0; j < matrix[i].length; j++) {
partialSum = addModulo(partialSum, matrix[i][j]);
sum[i][j] = partialSum;
if (i > 0)
sum[i][j] = addModulo(sum[i][j], sum[i - 1][j]);
}
}
}
public static final void solveProblem(Scanner in) {
String line = in.nextLine();
String tokens[] = line.split(" ");
int n = Integer.parseInt(tokens[0]);
int m = Integer.parseInt(tokens[1]);
int s = Integer.parseInt(tokens[2]);
int[][] rotated = new int[2 * n][2 * n];
int[][] sum = new int[2 * n][2 * n];
int[][] next = new int[2 * n][2 * n];
int lx = -1, ly = -1;
for (int i = 0; i < n; i++) {
line = in.nextLine();
for (int j = 0; j < line.length(); j++) {
char ch = line.charAt(j);
if (ch != 'P') {
rotated[n + i - j][i + j + 1] = 1;
if (ch == 'L') {
lx = i;
ly = j;
}
}
}
}
createSumTable(sum, rotated);
for (int k = 2; k <= m; k++) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
int x = n + i - j;
int y = i + j + 1;
if (rotated[x][y] != 0)
next[x][y] = query(sum, i, j, s);
}
int[][] tmp = next;
next = rotated;
rotated = tmp;
createSumTable(sum, rotated);
}
System.out.println(query(sum, lx, ly, s));
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int numTests = Integer.parseInt(in.nextLine());
for (int i = 0; i < numTests; i++)
solveProblem(in);
in.close();
}
}
In C :
#include <stdio.h>
#define P 1000000007
long long ll,t,a[2][1000][1000],mm,mmm,p[1010][1010];
long long r[1010][1010],i,j,k,l,m,n;
char s[210][210];
/*
long long bb(long long ll, long long ii, long long jj)
{
if(ii<0 || ii>=n || jj<0 || jj>=n) return 0;
return a[ll][ii][jj];
}
*/
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld %lld %lld\n",&n,&m,&k);
for(i=0;i<n;i++) scanf("%s\n",s[i]);
/*
for(i=0;i<n;i++)
for(j=0;j<n;j++)
for(l=0;l<0;l++) a[l][i][j]=0;
*/
for(i=0;i<1000;i++)
for(j=0;j<1000;j++)
a[0][i][j] = a[1][i][j] = 0;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(s[i][j]=='L') a[0][i+500][j+500] = 1;
for(i=0;i<1000;i++)
for(j=0;j<1000;j++) p[i][j]= r[i][j] =0;
//for(l=0;l<m;l++)
l=0;
ll=1;
while(m--)
{
for(i=500;i<n+500;i++)
{
for(j=-k+500;j<n+500;j++)
{
p[i][j] = (p[i-1][j+1] + a[l][i][j] - a[l][i-1-k][j+1+k])%P;
}
}
for(i=n+500;i<n+k+500;i++)
{
for(j=500;j<n+500;j++)
{
p[i][j] = (p[i-1][j+1] + a[l][i][j] - a[l][i-1-k][j+1+k])%P;
}
}
for(i=n-1+500;i>=500-1;i--)
{
for(j=-k+500;j<=n+500;j++)
{
r[i][j] = (r[i+1][j+1] + a[l][i][j] - a[l][i+1+k][j+1+k])%P;
}
}
for(i=-2+500;i>=-k+500;i--)
{
for(j=500;j<=n+500;j++)
{
r[i][j] = (r[i+1][j+1] + a[l][i][j] - a[l][i+1+k][j+1+k])%P;
}
}
j = 500-1;
//jj = 500+j;
mmm=0;
for(i=-k+500;i<500;i++)
{
// ii = i+500;
mmm = (mmm + p[i+k][j])%P;
//+ r[i][j-k]
//- a[l][i+k][j]
//- p[i-1][j-k] - r[i-1-k][j]
//+ a[l][i-1-k][j])%P;
}
for(j=500;j<n+500;j++)
{
// jj = j+500;
i = 500-1;
// ii= 500+i;
mmm = (mmm + p[i+k][j] + r[i-k][j] - a[l][i][j+k]
- p[i][j-1-k] - r[i][j-1-k] + a[l][i][j-k-1])%P;
mm = mmm;
for(i=500;i<n+500;i++)
{
// ii = i+500;
mm = (mm + p[i+k][j] + r[i][j-k] - a[l][i+k][j]
- p[i-1][j-k] - r[i-1-k][j] + a[l][i-1-k][j])%P;
// printf("mm %lld %lld %lld\n",i,j,mm);
if(s[i-500][j-500]!='P') a[ll][i][j] = mm;
else a[ll][i][j] = 0;
}
}
l = (l+1)%2;
ll = (ll+1)%2;
/*
for(i=500;i<n+500;i++)
{
for(j=500;j<n+500;j++) printf("%lld ",a[l][i][j]);
printf("\n");
}
printf("--------------\n");
*/
}
mm = 0;
for(i=500;i<n+500;i++)
for(j=500;j<n+500;j++) mm = (mm + a[l][i][j])%P;
printf("%lld\n",(mm+P)%P);
//return 0;
}
return 0;
}
View More Similar Problems
Is This a Binary Search Tree?
For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a
View Solution →Square-Ten Tree
The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the
View Solution →Balanced Forest
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a
View Solution →Jenny's Subtrees
Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .
View Solution →Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →Array Pairs
Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .
View Solution →