Is This a Binary Search Tree?


Problem Statement :


For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements:

The data value of every node in a node's left subtree is less than the data value of that node.
The data value of every node in a node's right subtree is greater than the data value of that node.
Given the root node of a binary tree, can you determine if it's also a binary search tree?

Complete the function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must return a boolean denoting whether or not the binary tree is a binary search tree. You may have to write one or more helper functions to complete this challenge.

Input Format

You are not responsible for reading any input from stdin. Hidden code stubs will assemble a binary tree and pass its root node to your function as an argument.

Constraints

 0 <= data <= 10^4

Output Format

You are not responsible for printing any output to stdout. Your function must return true if the tree is a binary search tree; otherwise, it must return false. Hidden code stubs will print this result as a Yes or No answer on a new line.



Solution :



title-img


                            Solution in C :

In C ++ :



The Node struct is defined as follows:
	struct Node {
		int data;
		Node* left;
		Node* right;
	}
*/  enum comp {LESS, GREATER};
    bool checkBST(Node* root,int minVal, int maxVal ){
        if(root==0)
            return true;
        int nVal=root->data;
        if(nVal<=minVal || nVal>=maxVal)
            return false;
        return checkBST(root->left,minVal,nVal) && checkBST(root->right,nVal, maxVal);
    }
	bool checkBST(Node* root) {
		if(root==0)
            return true;
        return checkBST(root->left, -1, root->data) && checkBST(root->right,root->data, 10001);
	}






In Java :



The Node class is defined as follows:
    class Node {
    int data;
    Node left;
    Node right;
     }
*/
    private boolean checkBST(Node n, int min, int max) {
        if(n == null) return true;
        return n.data > min && n.data < max && checkBST(n.left, min, n.data) && checkBST(n.right, n.data, max);
    }

    boolean checkBST(Node root) {
        if(root == null) return true;
        if(count == 0) return true;
        return checkBST(root, Integer.MIN_VALUE, Integer.MAX_VALUE);
    }







In  python3 :



from collections import deque
""" Node is defined as
class node:
  def __init__(self, data):
      self.data = data
      self.left = None
      self.right = None
"""
def check_binary_search_tree_(root, lowest_value=0, highest_value=10000):
    min_v = lowest_value - 1
    max_v = highest_value + 1
    q = deque([(root, min_v, max_v)])
    while q:
        node, min_val, max_val = q.popleft()
        if not node: continue
        if node.data >= max_val or node.data <= min_val: return False
        if node.left: q.append((node.left, min_val, node.data))
        if node.right: q.append((node.right, node.data, max_val))
    return True
                        








View More Similar Problems

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →

Print the Elements of a Linked List

This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode

View Solution →

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →

Insert a Node at the head of a Linked List

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

View Solution →