# Array Pairs

### Problem Statement :

```Consider an array of n  integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j)  pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i <  j.

Input Format

The first line contains an integer, n , denoting the number of elements in the array.
The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .```

### Solution :

```                            ```Solution in C :

In C++ :

#include <bits/stdc++.h>
using namespace std;

#define rep(i,n) for(int i=0;i<n;i++)
#define ll long long int
#define f first
#define s second
#define pi pair<ll,ll>
#define pii pair<pi,ll>
#define f first
#define s second
#define pb push_back
#define mod 1000000007
#define mp make_pair
#define pb push_back
#define rep(i,n) for(int i=0;i<n;i++)

int N;
int A;
int L;
int R;
vector<int>g;
ll bt;
int maxn;
void update(int ind, int val) {
while(ind <= maxn) {
bt[ind] += val;
ind += (ind & -ind);
}
}
ll query(int ind) {
ll ans = 0;
while(ind > 0) {
ans += bt[ind];
ind -= (ind & -ind);
}
return ans;
}
vector<int>V;
int find_ind(int x) {
if(V.back() <= x) return V.size();
return upper_bound(V.begin(), V.end(), x) - V.begin();
}
int main() {
ios_base::sync_with_stdio(0);
cin.tie(0);

cin >> N;
set<int>S;
unordered_map<int, int>M;

for(int i = 1; i <= N; i++) {
cin >> A[i];
assert(A[i] >= 1 and A[i] <= 1000000000);
S.insert(A[i]);
}
vector<pi>window;
for(int i = 1; i <= N; i++) {
while(window.size() > 0 and window.back().f < A[i]) window.pop_back();
if(window.size() == 0) L[i] = 1;
else {
L[i] = window.back().s + 1;
}
window.pb(mp(A[i], i));
}
window.clear();
for(int i = N; i >= 1; i--) {
while(window.size() > 0 and window.back().f <= A[i]) window.pop_back();
if(window.size() == 0) R[i] = N;
else {
R[i] = window.back().s - 1;
}
window.pb(mp(A[i], i));
}

for(int i = 1; i <= N; i++) {
if(i - L[i] <= R[i] - i) {
for(int j = L[i]; j < i; j++) {
g[i - 1].pb(-A[i] / A[j]);
g[R[i]].pb(A[i] / A[j]);
//S.insert(A[i]/A[j]);
}

g[i].pb(-1);
g[R[i]].pb(1);
} else {

for(int j = i + 1; j <= R[i]; j++) {
g[L[i] - 1].pb(-A[i] / A[j]);
g[i].pb(A[i] / A[j]);
//S.insert(A[i]/A[j]);
}

g[L[i] - 1].pb(-1);
g[i - 1].pb(1);
}
}
maxn = S.size() + 2;
int cnt = 1;
for(set<int>::iterator it = S.begin(); it != S.end(); it++) {
M[*it] = cnt++;
}
ll ans = 0;
int r;
V = vector<int>(S.begin(), S.end());
for(int i = 1; i <= N; i++) {
update(M[A[i]], 1);
for(int j = 0; j < g[i].size(); j++) {
r = find_ind(abs(g[i][j]));
if(g[i][j] < 0) {
ans -= query(r);
} else {
ans += query(r);
}
}
}
cout << ans;
}```
```

## Kundu and Tree

Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that

## Super Maximum Cost Queries

Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and

## Contacts

We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co

## No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

## Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

## Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do