Square-Ten Tree
Problem Statement :
The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the level contains subsegments of length , etc. In other words, every level (for every ) of square-ten tree consists of array subsegments indexed as: Level consists of array subsegments indexed as . The image below depicts the bottom-left corner (i.e., the first array elements) of the table representing a square-ten tree. The levels are numbered from bottom to top: 4x128 square-ten tree table Task Given the borders of array subsegment , find its decomposition into a minimal number of nodes of a square-ten tree. In other words, you must find a subsegment sequence such as for every , , , where every belongs to any of the square-ten tree levels and is minimal amongst all such variants. Input Format The first line contains a single integer denoting . The second line contains a single integer denoting . Constraints The numbers in input do not contain leading zeroes. Output Format As soon as array indices are too large, you should find a sequence of square-ten tree level numbers, , meaning that subsegment belongs to the level of the square-ten tree. Print this sequence in the following compressed format: On the first line, print the value of (i.e., the compressed sequence block count). For each of the subsequent lines, print space-separated integers, and (, ), meaning that the number appears consequently times in sequence . Blocks should be listed in the order they appear in the sequence. In other words, should be equal to , should be equal to , etc. Thus must be true and must be true for every . All numbers should be printed without leading zeroes.
Solution :
Solution in C :
In C++ :
/*
*/
//#pragma comment(linker, "/STACK:16777216")
#define _CRT_SECURE_NO_WARNINGS
#include <fstream>
#include <iostream>
#include <string>
#include <complex>
#include <math.h>
#include <set>
#include <vector>
#include <map>
#include <queue>
#include <stdio.h>
#include <stack>
#include <algorithm>
#include <list>
#include <ctime>
#include <memory.h>
#include <assert.h>
#define y0 sdkfaslhagaklsldk
#define y1 aasdfasdfasdf
#define yn askfhwqriuperikldjk
#define j1 assdgsdgasghsf
#define tm sdfjahlfasfh
#define lr asgasgash
#define norm asdfasdgasdgsd
#define eps 1e-9
#define M_PI 3.141592653589793
#define bs 1000000007
#define bsize 256
using namespace std;
const int INF = 1e9;
const int N = 500331;
string st1, st2;
vector<int> levels;
vector<pair<int, string> > ans;
bool not_larger(vector<int> &v1, vector<int> &v2)
{
if (v1.size() != v2.size())
{
return v1.size() < v2.size();
}
for (int i = v1.size() - 1; i >= 0; --i)
{
if (v1[i] != v2[i])
return v1[i] < v2[i];
}
return true;
}
vector<int> get_id(string st)
{
vector<int> res;
reverse(st.begin(), st.end());
for (int i = 0; i < st.size(); i++)
{
res.push_back(st[i] - 48);
}
return res;
}
string eval(vector<int> v)
{
string res;
res.resize(v.size());
for (int i = 0; i < v.size(); i++)
res[i]=(v[i] + 48);
reverse(res.begin(), res.end());
return res;
}
vector<int> get_vec(vector<int> v, int ps)
{
while (v.size() <= ps)
v.push_back(0);
v.push_back(0);
v[ps]++;
int ost = 0;
for (int i = 0; i < v.size(); i++)
{
v[i] += ost;
ost = v[i] / 10;
v[i] %= 10;
}
while (v.size()>1 && v.back() == 0)
v.pop_back();
return v;
}
vector<int> normalize(vector<int> v, int shi)
{
vector<int> res;
for (int i = shi; i < v.size(); i++)
res.push_back(v[i]);
if (res.size() == 0)
res.push_back(0);
return res;
}
vector<int> get_dif(vector<int> a, vector<int> b)
{
while (b.size() < a.size())
b.push_back(0);
int ost = 0;
for (int i = 0; i < a.size(); ++i)
{
a[i] -= b[i];
a[i] -= ost;
if (a[i] < 0)
ost = 1, a[i] += 10;
else
ost = 0;
}
while (a.size()>1 && a.back() == 0)
a.pop_back();
return a;
}
vector<int> renorm(vector<int> v)
{
int ost = 0;
for (int i = 0; i < v.size(); i++)
{
v[i] += ost;
ost = v[i] / 10;
v[i] %= 10;
}
v.push_back(ost);
while (v.size()>1 && v.back() == 0)
v.pop_back();
return v;
}
vector<int> get_next(vector<int> v, int ps)
{
while (v.size() <= ps)
v.push_back(0);
int shit = 0;
for (int i = 0; i < ps; i++)
{
if (v[i] != 0)
shit = 1;
}
if (shit == 0)
{
return renorm(v);
}
//cout << v.size() << "%" << ps << " " << endl;
v[ps]++;
for (int i = 0; i < ps; i++)
v[i] = 0;
return renorm(v);
}
vector<int> get_next2(vector<int> v, int ps)
{
while (v.size() <= ps)
v.push_back(0);
int shit = 0;
for (int i = 0; i < ps; i++)
{
if (v[i] != 0)
shit = 1;
}
shit = 1;
if (shit == 0)
{
return renorm(v);
}
v[ps]++;
for (int i = 0; i < ps; i++)
v[i] = 0;
return renorm(v);
}
vector<int> min1(vector<int> v)
{
int q = 0;
while (v[q] == 0)
{
v[q] = 9;
++q;
}
v[q]--;
while (v.size() > 1 && v.back() == 0)
v.pop_back();
return v;
}
void show(vector<int> v)
{
reverse(v.begin(), v.end());
for (int i = 0; i < v.size(); i++)
cout << v[i];
cout << endl;
}
void norm_suf(vector<int> &v, int suf)
{
while (v.size() < suf)
v.push_back(0);
for (int i = 0; i < suf; i++)
v[i] = 0;
while (v.size()>1 && v.back() == 0)
v.pop_back();
return;
}
vector<int> add(vector<int> a, vector<int> b)
{
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
int ost = 0;
for (int i = 0; i < a.size(); i++)
{
a[i] = a[i] + b[i] + ost;
ost = a[i] / 10;
a[i] %= 10;
}
a.push_back(ost);
while (a.size()>1 && a.back() == 0)
a.pop_back();
return a;
}
vector<pair<int, string> > compress(vector<pair<int, string> > v)
{
vector<pair<int, string> > res;
pair<int, string> cur;
cur = v[0];
for (int i = 1; i < v.size(); i++)
{
if (v[i].first == v[i - 1].first)
{
string temp1 = cur.second;
string temp2 = v[i].second;
vector<int> v1 = get_id(temp1);
vector<int> v2 = get_id(temp2);
v1 = add(v1, v2);
cur.second = eval(v1);
}
else
{
res.push_back(cur);
cur = v[i];
}
}
res.push_back(cur);
return res;
}
int main(){
//freopen("fabro.in","r",stdin);
//freopen("fabro.out","w",stdout);
//freopen("F:/in.txt", "r", stdin);
//freopen("F:/output.txt", "w", stdout);
ios_base::sync_with_stdio(0);
//cin.tie(0);
cin >> st1 >> st2;
/* st1 = "0";
st2 = "1";
for (int i = 1; i <= 1000000; i++)
st2 += "0";
*/
levels.push_back(0);
for (int i = 0; i <= 20; i++)
{
levels.push_back(1 << i);
}
vector<int> v1 = get_id(st1);
v1 = min1(v1);
vector<int> v2 = get_id(st2);
for (int i = 0; i+1 < levels.size(); i++)
{
//cout << i << " " << clock()*1.0 / CLOCKS_PER_SEC << endl;
vector<int> next1 = get_next(v1, levels[i+1]);
vector<int> next2 = v2;
/*cout << "#" << i << endl;
if (i < 5)
{
show(next1);
show(next2);
show(v1);
}*/
if (not_larger(next2, next1))
continue;
vector<int> V = get_dif(next1, v1);
//cout << "@@" << endl;
//show(V);
//cout << "%" << i << " " << clock()*1.0 / CLOCKS_PER_SEC << endl;
V = normalize(V, levels[i]);
//cout << "%" << i << " " << clock()*1.0 / CLOCKS_PER_SEC << endl;
if (V.size() > 1 || V[0] != 0)
{
ans.push_back(make_pair(i, eval(V)));
v1 = next1;
}
v1 = next1;
}
for (int i = levels.size()-2; i >=0; i--)
{
vector<int> next1 = get_next2(v1, levels[i+1]);
vector<int> next2 = v2;
norm_suf(next2, levels[i]);
/*cout << "#" << i << endl;
if (i < 5)
{
show(next1);
show(next2);
show(v1);
}
*/
if (not_larger(next2, next1))
next1 = next2;
if (!not_larger(v1, next1))
continue;
vector<int> V = get_dif(next1, v1);
V = normalize(V, levels[i]);
if (V.size() > 1 || V[0] != 0)
{
ans.push_back(make_pair(i, eval(V)));
v1 = next1;
}
}
vector<int> V = get_dif(v2, v1);
if (V.size()>1 || V[0] != 0)
ans.push_back(make_pair(0, eval(V)));
ans = compress(ans);
cout << ans.size() << endl;
for (int i = 0; i < ans.size(); i++)
{
cout << ans[i].first << " " << ans[i].second << endl;
}
cin.get(); cin.get();
return 0;
}
In C :
#include<stdio.h>
int powtwo(int x)
{
if (x < 0)
return 0;
return 1 << x;
}
void subtract(char *src, char *dst, int start, int end, int borrow)
{
while (start < end)
{
dst[start] += borrow;
borrow = 0;
if (src[start] < dst[start])
{
src[start] += 10;
borrow++;
}
src[start] -= dst[start];
dst[start] = 0;
start++;
}
}
void add(char *src, char *dst, int start, int end)
{
int carry = 0;
while (start < end || carry)
{
src[start] += dst[start] + carry;
dst[start] = 0;
carry = src[start] / 10;
src[start] %= 10;
start++;
}
}
int main()
{
char a[1048577] = {0}, b[1048577] = {0};
int A, B, i, j, k, l, m, n;
short int ansA[25] = {0}, ansB[25] = {0}, countA = 0, countB = 0;
scanf("%s%s", a, b);
for (A = -1; a[++A]; a[A] -= '0');
for (B = -1; b[++B]; b[B] -= '0');
for (i = -1; ++i < A >> 1; a[i] ^= a[A - i - 1] ^= a[i] ^= a[A - i - 1]);
for (i = -1; ++i < B >> 1; b[i] ^= b[B - i - 1] ^= b[i] ^= b[B - i - 1]);
if (A == B)
{
while (A && a[A - 1] == b[B - 1])
a[--A] = b[--B] = 0;
}
else
{
while (A < B)
a[A++] = 0;
}
if (!A)
{
printf("1\n0 1\n");
return 0;
}
n = m = 1;
while (A > n)
{
n <<= 1;
m++;
}
a[0] -= 2;
l = 0;
for (i = -1; ++i < m - 1;)
{
k = powtwo(i) - powtwo(i - 1);
for (j = -1; ++j < k; l++)
{
a[l] = 9 - a[l];
a[l + 1] -= a[l] / 10;
a[l] %= 10;
ansA[i] = ansA[i] || a[l];
ansB[i] = ansB[i] || b[l];
}
countA += ansA[i];
countB += ansB[i];
}
i = powtwo(m - 2);
subtract(b, a, i, A, 1);
for (i--; ++i < A;)
ansB[m - 1] = ansB[m - 1] || b[i];
countB += ansB[--m];
while (!ansA[m] && !ansB[m])
m--;
if (ansA[m] == ansB[m])
{
ansA[m] = 0;
countA--;
add(b, a, powtwo(m - 1), powtwo(m));
}
printf("%d", countA + countB);
for (i = -1; ++i <= m;)
{
if (ansA[i])
{
printf("\n%d ", i);
k = powtwo(i);
j = powtwo(i - 1);
while (!a[--k]);
while (k >= j)
printf("%c", '0' + a[k--]);
}
}
while (m >= 0 && !ansB[m])
m--;
if (m >= 0)
{
printf("\n%d ", m);
k = powtwo(m);
j = powtwo(m - 1);
while (!b[k])
k--;
while (k >= j)
printf("%c", '0' + b[k--]);
while (m--)
{
if (ansB[m])
{
printf("\n%d ", m);
k = powtwo(m);
j = powtwo(m - 1);
while (!b[--k]);
while (k >= j)
printf("%c", '0' + b[k--]);
}
}
}
return 0;
}
In Java :
import java.util.*;
public class Solution {
public static class Group {
public byte[] source;
public int power;
public Group(byte[] source, int power) {
this.source = source;
this.power = power;
}
public void print() {
System.out.print(powerToLevel(power));
System.out.print(" ");
boolean nonZero = false;
for(int i = 0; i < source.length; i++) {
int d = source[i];
if (d != 0) nonZero = true;
if (nonZero) System.out.print(source[i]);
}
System.out.println();
}
}
public static void main(String[] args)
{
String[] input = readInput();
List<Group> groups = solve(input[0], input[1]);
//Util.validate(strL, strR, groups);
printGroups(groups);
}
public static String[] readInput()
{
try (Scanner in = new Scanner(System.in) ) {
String L = in.nextLine().trim();
String R = in.nextLine().trim();
return new String[]{L, R};
}
}
public static void printGroups(List<Group> groups)
{
System.out.println(groups.size());
for(Group group: groups) {
group.print();
}
}
public static List<Group> solve(String strL, String strR)
{
byte[] L = toArray(strL, strR.length() + 1);
byte[] R = toArray(strR, strR.length() + 1);
subtract1(L);
//System.out.println(Util.toStr(L) + " " + Util.toStr(R));
eraseCommonPrefix(L, R);
int tens = tens(realLength(R));
byte[] upper = findUpper(L, tens);
byte[] dif = new byte[upper.length];
subtract(upper, L, dif);
List<Group> groups = new ArrayList<Group>();
addGroupsL(tens, dif, groups);
byte[] lower = findLower(R, tens);
byte[] dif2 = new byte[R.length];
subtract(lower, upper, dif2);
addGroup(groups, dif2, 0, R.length - tens, tens);
byte[] dif3 = new byte[R.length];
subtract(R, upper, dif3);
addGroupsR(tens, groups, dif3);
return mergeSimilar(groups);
}
public static int powerToLevel(int p) {
int count = 0;
while(p > 0) {
p /= 2;
count++;
}
return count;
}
public static void addGroupsR(int tens, List<Group> groups, byte[] dif3)
{
int c = tens;
int t = tens;
while(t > 0) {
int tu = Math.max(t/2, 1);
int b = dif3.length - 1 - (c - 1);
int e = dif3.length - 1 - (c - tu) + 1;
addGroup(groups, dif3, b, e, t/2);
c -= tu;
t /= 2;
}
}
public static byte[] findLower(byte[] R, int tens)
{
byte[] lower = new byte[R.length];
System.arraycopy(R, 0, lower, 0, R.length - tens);
return lower;
}
public static void addGroupsL(int tens, byte[] dif, List<Group> groups)
{
int c = 0;
int t = 1;
while(t <= tens) {
int tu = Math.max(t / 2, 1);
int b = dif.length - 1 - (c+tu-1);
int e = dif.length - 1 - (c) + 1;
addGroup(groups, dif, b, e, t/2);
c += tu;
t *= 2;
}
}
public static void eraseCommonPrefix(byte[] L, byte[] R)
{
assert(L.length == R.length);
for(int i = 0; i < L.length; i++) {
if (L[i] == R[i]) {
L[i] = 0;
R[i] = 0;
} else {
break;
}
}
}
public static byte[] findUpper(byte[] L, int tens)
{
byte[] upper = new byte[L.length + 1];
boolean nonZero = false;
for(int i = 0; i < tens; i++) {
int li = L.length - 1 - i;
if (li >= 0 && L[li] > 0) {
nonZero = true;
}
}
int carry = nonZero ? 1 : 0;
for(int i = tens; i < upper.length; i++) {
byte s = 0;
int lindex = L.length - 1 - i;
if (lindex >= 0) {
s = L[lindex];
}
int sum = s + carry;
upper[upper.length - 1 - i] = (byte)(sum % 10);
carry = sum / 10;
}
return upper;
}
public static int realLength(byte[] r)
{
int i;
for(i = 0; i < r.length; i++) {
if (r[i] != 0) {
break;
}
}
return r.length - i;
}
public static List<Group> mergeSimilar(List<Group> src)
{
List<Group> result = new ArrayList<Group>();
Group current = null;
for(int i = 0; i < src.size(); i++) {
Group g = src.get(i);
if (null == current) {
current = g;
} else {
if (current.power == g.power) {
current.source = add(current.source, g.source);
} else {
result.add(current);
current = g;
}
}
}
if (current != null) {
result.add(current);
}
return result;
}
public static void addGroup(List<Group> groups, byte[] dif, int b, int e, int power)
{
if (!allZeroes(dif, b, e)) {
Group group = new Group(createCopy(dif, b, e), power);
groups.add(group);
}
}
public static byte[] createCopy(byte[] dif, int b, int e)
{
byte[] result = new byte[e - b];
System.arraycopy(dif, b, result, 0, e - b);
return result;
}
public static boolean allZeroes(byte[] dif, int b, int e)
{
for(int i = b; i < e; i++) {
if (dif[i] != 0)
return false;
}
return true;
}
public static byte[] add(byte[] A, byte[] B)
{
int l = Math.max(A.length, B.length) + 1;
byte[] C = new byte[l];
int carry = 0;
for(int i = 0; i < l; i++) {
int ia = A.length - 1 - i;
int ib = B.length - 1 - i;
int a = ia >= 0 ? A[ia] : 0;
int b = ib >= 0 ? B[ib] : 0;
int c = a + b + carry;
carry = c / 10;
int ic = C.length - 1 - i;
C[ic] = (byte)(c % 10);
}
return C;
}
public static void subtract(byte[] A, byte[] B, byte[] C)
{
int borrow = 0;
for(int i = 0; i < A.length; i++) {
int a = A[A.length - 1 - i] - borrow;
int b;
if (i < B.length)
b = B[B.length - 1 - i];
else
b = 0;
if (b > a) {
borrow = 1;
a += 10;
} else {
borrow = 0;
}
C[C.length - 1 - i] = (byte)(a - b);
}
}
/**
* return largest x such that 10^x <= s
*/
public static int tens(int len)
{
int x = 1;
int c = len - 1;
while(c > 0) {
c /= 2;
x *= 2;
}
return x/2;
}
public static byte[] toArray(String s, int len)
{
byte[] result = new byte[len];
for(int i = 0; i < s.length(); i++) {
char c = s.charAt(s.length() - 1 - i);
assert(c >= '0' && c <= '9');
int d = c - '0';
result[result.length - 1 - i] = (byte)d;
}
return result;
}
/**
* s = all zeroes not allowed
*/
public static void subtract1(byte[] s)
{
for(int i = s.length - 1; i >= 0; i--) {
int d = s[i];
if (0 == d) {
s[i] = 9;
} else {
s[i]--;
break;
}
}
}
}
In python3 :
# work with big numbers as strings
L = input()
R = input()
# look for largest possible level
d = len(R)
level = 0
n = 1
tree = [n] # chunk dimension
while d >= n + 1:
tree.append(n)
level += 1
n = 2 ** level
# go backwards from largest level
def breakdown(N, k):
if k == 0:
return [int(N)]
div = tree[k]
chunks = breakdown(N[-div:], k - 1)
chunks.append(N[:-div].lstrip('0') or 0)
return chunks
divL = breakdown(L, level)
divR = breakdown(R, level)
seq = []
# add up to higher level for L
carry = 0
for k, n in enumerate(map(int, divL)):
if k == 0:
carry = -1 # add up lowest number
n += carry
carry = 0
if k < level:
if n > 0:
n = 10 ** tree[k] - n
carry = 1
elif n < 0:
n = 1 # if lowest was zero
seq.append((k, n))
# sum up last level of L and R
if n != 0:
divR[k] = int(divR[k]) - n
while divR[-1] == 0:
del divR[-1]
n = seq.pop()[1]
if n != 0:
divR[-1] = int(divR[-1]) + n
# add R in reversed order
seq.extend(reversed(list(enumerate(divR))))
# exclude empty levels
seq = [s for s in seq if s[1] != 0]
print(len(seq))
for s in seq:
print(*s)
View More Similar Problems
Tree: Huffman Decoding
Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t
View Solution →Binary Search Tree : Lowest Common Ancestor
You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b
View Solution →Swap Nodes [Algo]
A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from
View Solution →Kitty's Calculations on a Tree
Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a
View Solution →Is This a Binary Search Tree?
For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a
View Solution →Square-Ten Tree
The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the
View Solution →