Balanced Forest
Problem Statement :
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to allow creation of a balanced forest. If it's not possible to create a balanced forest, return -1. For example, you are given node values c = [15,12,8,14,13] and edges = [ [1,2], [1, 3], [1, 4]. [4, 5] ]. It is the following tree: The blue node is root, the first number in a node is node number and the second is its value. Cuts can be made between nodes 1 and 3 and nodes 1 and 4 to have three trees with sums 27, 27 and 8. Adding a new node w of c[w] = 19 to the third tree completes the solution. Function Description Complete the balancedForest function in the editor below. It must return an integer representing the minimum value of that can be added to allow creation of a balanced forest, or -1 if it is not possible. balancedForest has the following parameter(s): c: an array of integers, the data values for each node edges: an array of 2 element arrays, the node pairs per edge
Solution :
Solution in C :
In C ++ :
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <cstdlib>
#include <ctime>
#include <deque>
#include <unordered_set>
using namespace std;
int q;
map <long long, int> Map1, Map2;
long long ctot;
int c[110000];
vector <int> ve[110000];
long long ans;
int n;
long long sum[1100000];
void dfs1(int x, int f) {
sum[x] = c[x];
for (int i = 0; i < (int) ve[x].size(); i++)
if (ve[x][i] != f) {
dfs1(ve[x][i], x);
sum[x] += sum[ve[x][i]];
}
Map1[sum[x]] += 1;
}
void test(long long x) {
long long y = ctot - 2 * x;
if (y > 0 && y <= x)
ans = min(ans, x - y);
}
void dfs2(int x, int f) {
if (Map2[2 * sum[x]])
test(sum[x]);
if (Map2[ctot - sum[x]])
test(sum[x]);
if ((ctot - sum[x]) % 2 == 0 && Map2[ctot - (ctot - sum[x]) / 2])
test((ctot - sum[x]) / 2);
Map2[sum[x]] += 1;
if (Map1[sum[x]] > Map2[sum[x]])
test(sum[x]);
if (ctot - 2 * sum[x] >= sum[x] && Map1[ctot - 2 * sum[x]] > Map2[ctot - 2 * sum[x]])
test(sum[x]);
if ((ctot - sum[x]) % 2 == 0 && (ctot - sum[x]) / 2 >= sum[x] && Map1[(ctot - sum[x]) / 2] > Map2[(ctot - sum[x]) / 2])
test((ctot - sum[x]) / 2);
if (sum[x] * 2 == ctot)
ans = min(ans, sum[x]);
for (int i = 0; i < (int) ve[x].size(); i++)
if (ve[x][i] != f) {
dfs2(ve[x][i], x);
}
Map2[sum[x]] -= 1;
}
int main() {
scanf("%d", &q);
while (q--) {
Map1.clear();
Map2.clear();
ans = 1e18;
scanf("%d", &n);
ctot = 0;
for (int i = 1; i <= n; i++) {
scanf("%d", &c[i]);
ctot += c[i];
}
for (int i = 1; i <= n; i++)
ve[i].clear();
for (int i = 1; i < n; i++) {
int x, y;
scanf("%d%d", &x, &y);
ve[x].push_back(y);
ve[y].push_back(x);
}
dfs1(1, 0);
dfs2(1, 0);
if (ans == 1e18)
printf("-1\n");
else
printf("%lld\n", ans);
}
}
In Java :
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Comparator;
import java.util.InputMismatchException;
public class E {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
for(int T = ni();T > 0;T--){
int n = ni();
int[] a = na(n);
int[] from = new int[n - 1];
int[] to = new int[n - 1];
for (int i = 0; i < n - 1; i++) {
from[i] = ni() - 1;
to[i] = ni() - 1;
}
int[][] g = packU(n, from, to);
int[][] pars = parents3(g, 0);
int[] par = pars[0], ord = pars[1], dep = pars[2];
int[][] rs = makeRights(g, par, 0);
int[] iord = rs[1], right = rs[2];
int[][] spar = logstepParents(par);
long[] des = new long[n];
for(int i = n-1;i >= 0;i--){
int cur = ord[i];
des[cur] += a[cur];
if(i > 0)des[par[cur]] += des[cur];
}
long W = des[0];
long ret = Long.MAX_VALUE;
// t=u
{
long[] dd = Arrays.copyOf(des, n);
Arrays.sort(dd);
for(int i = 0;i < n-1;i++){
if(dd[i] == dd[i+1] && W-2*dd[i] <= dd[i] && W-2*dd[i] >= 0){
ret = Math.min(ret, dd[i]-(W-2*dd[i]));
}
}
}
// s=t
{
long[][] poss = new long[n][];
for(int i = 0;i < n;i++){
poss[i] = new long[]{des[i], iord[i]};
}
Arrays.sort(poss, new Comparator<long[]>() {
public int compare(long[] a, long[] b) {
if(a[0] != b[0])return Long.compare(a[0], b[0]);
return Long.compare(a[1], b[1]);
}
});
long[] posv = new long[n];
for(int i = 0;i < n;i++)posv[i] = poss[i][0];
for(int i = 0;i < n;i++){
long t = des[i];
long u = W-2L*t;
if(u >= 0 && t >= u){
int lb = lowerBound(posv, u);
int ub = lowerBound(posv, u+1);
if(lb < ub){
if((int)poss[lb][1] < iord[i]){
ret = Math.min(ret, t-u);
}
if((int)poss[ub-1][1] > right[iord[i]]){
ret = Math.min(ret, t-u);
}
}
}
}
}
// ireko
// t=u
{
for(int i = 0;i < n;i++){
long u = des[i];
long s = W-u*2;
if(s >= 0 && s <= u){
int cur = i;
for(int h = spar.length-1;h >= 0;h--){
int anc = spar[h][cur];
if(anc == -1)continue;
if(des[anc] <= 2*u){
cur = anc;
}
}
if(des[cur] == 2*u){
ret = Math.min(ret, u-s);
}
}
}
}
// s=u
{
for(int i = 0;i < n;i++){
long u = des[i];
long t = W-u*2;
if(t >= 0 && t <= u){
int cur = i;
for(int h = spar.length-1;h >= 0;h--){
int anc = spar[h][cur];
if(anc == -1)continue;
if(des[anc] <= t+u){
cur = anc;
}
}
if(des[cur] == t+u){
ret = Math.min(ret, u-t);
}
}
}
}
// s=t
{
for(int i = 0;i < n;i++){
long u = des[i];
if((W-u)%2 != 0)continue;
long t = (W-u)/2;
if(t >= 0 && t >= u){
int cur = i;
for(int h = spar.length-1;h >= 0;h--){
int anc = spar[h][cur];
if(anc == -1)continue;
if(des[anc] <= t+u){
cur = anc;
}
}
if(des[cur] == t+u){
ret = Math.min(ret, t-u);
}
}
}
}
if(ret == Long.MAX_VALUE){
out.println(-1);
}else{
out.println(ret);
}
}
}
public static int lowerBound(long[] a, long v)
{
int low = -1, high = a.length;
while(high-low > 1){
int h = high+low>>>1;
if(a[h] >= v){
high = h;
}else{
low = h;
}
}
return high;
}
public static int[] sortByPreorder(int[][] g, int root){
int n = g.length;
int[] stack = new int[n];
int[] ord = new int[n];
BitSet ved = new BitSet();
stack[0] = root;
int p = 1;
int r = 0;
ved.set(root);
while(p > 0){
int cur = stack[p-1];
ord[r++] = cur;
p--;
for(int e : g[cur]){
if(!ved.get(e)){
stack[p++] = e;
ved.set(e);
}
}
}
return ord;
}
public static int[][] makeRights(int[][] g, int[] par, int root)
{
int n = g.length;
int[] ord = sortByPreorder(g, root);
int[] iord = new int[n];
for(int i = 0;i < n;i++)iord[ord[i]] = i;
int[] right = new int[n];
for(int i = n-1;i >= 0;i--){
int v = i;
for(int e : g[ord[i]]){
if(e != par[ord[i]]){
v = Math.max(v, right[iord[e]]);
}
}
right[i] = v;
}
return new int[][]{ord, iord, right};
}
public static int lca2(int a, int b, int[][] spar, int[] depth) {
if (depth[a] < depth[b]) {
b = ancestor(b, depth[b] - depth[a], spar);
} else if (depth[a] > depth[b]) {
a = ancestor(a, depth[a] - depth[b], spar);
}
if (a == b)
return a;
int sa = a, sb = b;
for (int low = 0, high = depth[a], t = Integer.highestOneBit(high), k = Integer
.numberOfTrailingZeros(t); t > 0; t >>>= 1, k--) {
if ((low ^ high) >= t) {
if (spar[k][sa] != spar[k][sb]) {
low |= t;
sa = spar[k][sa];
sb = spar[k][sb];
} else {
high = low | t - 1;
}
}
}
return spar[0][sa];
}
protected static int ancestor(int a, int m, int[][] spar) {
for (int i = 0; m > 0 && a != -1; m >>>= 1, i++) {
if ((m & 1) == 1)
a = spar[i][a];
}
return a;
}
public static int[][] logstepParents(int[] par) {
int n = par.length;
int m = Integer.numberOfTrailingZeros(Integer.highestOneBit(n - 1)) + 1;
int[][] pars = new int[m][n];
pars[0] = par;
for (int j = 1; j < m; j++) {
for (int i = 0; i < n; i++) {
pars[j][i] = pars[j - 1][i] == -1 ? -1 : pars[j - 1][pars[j - 1][i]];
}
}
return pars;
}
public static int[][] parents3(int[][] g, int root) {
int n = g.length;
int[] par = new int[n];
Arrays.fill(par, -1);
int[] depth = new int[n];
depth[0] = 0;
int[] q = new int[n];
q[0] = root;
for (int p = 0, r = 1; p < r; p++) {
int cur = q[p];
for (int nex : g[cur]) {
if (par[cur] != nex) {
q[r++] = nex;
par[nex] = cur;
depth[nex] = depth[cur] + 1;
}
}
}
return new int[][] { par, q, depth };
}
static int[][] packU(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new E().run(); }
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o)
{ System.out.println(Arrays.deepToString(o)); }
}
In C :
#include <stdio.h>
#include <stdlib.h>
#define HASH_SIZE 123455
typedef struct _lnode{
int x;
int w;
struct _lnode *next;
} lnode;
typedef struct _node{
long long x;
int c;
long long ans;
struct _node *next;
} node;
void clean_table();
void insert_edge(int x,int y,int w);
void dfs0(int x,int y);
void dfs1(int x,int y);
void insert(long long x,long long ans);
void removee(long long x,long long ans);
void search(long long x);
void freehash();
int a[50000];
long long sub[50000],min,sum;
lnode *table[50000]={0};
node *hash[HASH_SIZE]={0};
int main(){
int T,n,x,y,i;
scanf("%d",&T);
while(T--){
scanf("%d",&n);
for(i=sum=0;i<n;i++){
scanf("%d",a+i);
sum+=a[i];
}
for(i=0;i<n-1;i++){
scanf("%d%d",&x,&y);
insert_edge(x-1,y-1,1);
}
dfs0(0,-1);
min=-1;
dfs1(0,-1);
printf("%lld\n",min);
clean_table();
freehash();
}
return 0;
}
void clean_table(){
int i;
lnode *p,*pp;
for(i=0;i<50000;i++)
if(table[i]){
p=table[i];
while(p){
pp=p->next;
free(p);
p=pp;
}
table[i]=NULL;
}
return;
}
void insert_edge(int x,int y,int w){
lnode *t=malloc(sizeof(lnode));
t->x=y;
t->w=w;
t->next=table[x];
table[x]=t;
t=malloc(sizeof(lnode));
t->x=x;
t->w=w;
t->next=table[y];
table[y]=t;
return;
}
void dfs0(int x,int y){
lnode *p;
sub[x]=a[x];
for(p=table[x];p;p=p->next)
if(p->x!=y){
dfs0(p->x,x);
sub[x]+=sub[p->x];
}
return;
}
void dfs1(int x,int y){
lnode *p;
long long down,up;
search(sub[x]);
down=sub[x];
up=sum-sub[x];
if(down==up && min==-1)
min=down;
if(down%2==0 && down/2*3>=sum)
insert(down/2,down/2*3-sum);
if(up<down && up*3>=sum){
insert(up,up*3-sum);
insert(down-up,up*3-sum);
}
for(p=table[x];p;p=p->next)
if(p->x!=y)
dfs1(p->x,x);
if(down%2==0 && down/2*3>=sum)
removee(down/2,down/2*3-sum);
if(up<down && up*3>=sum){
removee(up,up*3-sum);
removee(down-up,up*3-sum);
}
if(up%2==0 && up/2*3>=sum)
insert(up/2,up/2*3-sum);
if(down<up && down*3>=sum){
insert(down,down*3-sum);
insert(up-down,down*3-sum);
}
return;
}
void insert(long long x,long long ans){
int bucket=x%HASH_SIZE;
node *t=hash[bucket];
while(t){
if(t->x==x && t->ans==ans){
t->c++;
return;
}
t=t->next;
}
t=(node*)malloc(sizeof(node));
t->x=x;
t->ans=ans;
t->c=1;
t->next=hash[bucket];
hash[bucket]=t;
return;
}
void removee(long long x,long long ans){
int bucket=x%HASH_SIZE;
node *t=hash[bucket],*p=NULL;
while(t){
if(t->x==x && t->ans==ans){
t->c--;
if(!t->c){
if(!p){
hash[bucket]=t->next;
free(t);
}
else{
p->next=t->next;
free(t);
}
}
return;
}
p=t;
t=t->next;
}
return;
}
void search(long long x){
int bucket=x%HASH_SIZE;
node *t=hash[bucket];
while(t){
if(t->x==x)
if(min==-1 || t->ans<min)
min=t->ans;
t=t->next;
}
return;
}
void freehash(){
int i;
node *t,*p;
for(i=0;i<HASH_SIZE;i++){
t=hash[i];
while(t){
p=t->next;
free(t);
t=p;
}
hash[i]=NULL;
}
return;
}
In python3 :
from random import randrange
import sys
sys.setrecursionlimit(10**5)
def r():
return list(map(int, input().split()))
def bin_search(arr, pred, lo=0):
hi = len(arr)
while lo < hi:
mid = (lo+hi)//2
if pred(arr[mid]):
hi = mid
else:
lo = mid + 1
return lo if lo < len(arr) else None
class UndirectedGraph(object):
def __init__(self, size):
self.size = size
self.M = 0
self.edges = [set([]) for _ in range(self.size)]
def add_edge(self, u, v):
"""Adds edge to graph if it doesn't already exist."""
if v not in self.edges[u]:
self.edges[u].add(v)
self.edges[v].add(u)
self.M += 1
def neighbors(self, u):
for v in self.edges[u]:
yield v
class WeightedTree(UndirectedGraph):
def __init__(self, size, weights):
super().__init__(size)
self.weights = weights
self.labels = [None]*self.size
self.cum_weights = [None]*self.size
self.inverted = [False]*self.size
self.nextnode = 0
self.num_children = [None]*self.size
self.root = 0
def initialize(self):
self.set_labels(self.root)
self.sorted_nodes = sorted(list(range(self.size)), key = lambda x : self.cum_weights[x])
def set_labels(self, root):
self.dfs(root, set([]))
self.total_weight = self.cum_weights[self.root]
for i, cw in enumerate(self.cum_weights):
if cw > self.total_weight - cw:
self.cum_weights[i] = self.total_weight - cw
self.inverted[i] = True
def dfs(self, u, visited):
visited.add(u)
self.labels[u] = self.nextnode
self.nextnode += 1
self.cum_weights[u] = self.weights[u]
self.num_children[u] = 0
for v in self.neighbors(u):
if v not in visited:
cw, nchildren = self.dfs(v, visited)
self.cum_weights[u] += cw
self.num_children[u] += nchildren + 1
return self.cum_weights[u], self.num_children[u]
def solve(self):
tw = self.total_weight
first_idx = bin_search(self.sorted_nodes, lambda u : self.cum_weights[u] >= (tw+2)//3)
if first_idx is None:
return None
while first_idx < self.size:
first = self.sorted_nodes[first_idx]
first_cw = self.cum_weights[first]
label1 = self.labels[first]
last_child_label = label1 + self.num_children[first]
for target_w in (tw - first_cw * 2, first_cw):
second_idx = bin_search(self.sorted_nodes, lambda u: self.cum_weights[u] >= target_w)
if second_idx is not None:
while (second_idx < self.size
and self.cum_weights[self.sorted_nodes[second_idx]] == target_w):
second = self.sorted_nodes[second_idx]
is_child = label1 < self.labels[second] <= last_child_label
is_child = is_child if not self.inverted[first] else not is_child
if not is_child and self.labels[second] != label1:
return first_cw * 3 - tw
second_idx += 1
first_idx += 1
if 2*first_cw == tw:
return first_cw
return None
def read_input():
n = int(input())
weights = r()
G = WeightedTree(n, weights)
for _ in range(n-1):
u, v = r()
u -= 1
v -= 1
G.add_edge(u, v)
G.initialize()
return G
def main():
q = int(input())
for _ in range(q):
G = read_input()
ans = G.solve()
print(ans if ans is not None else -1)
main()
View More Similar Problems
Tree: Preorder Traversal
Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's
View Solution →Tree: Postorder Traversal
Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the
View Solution →Tree: Inorder Traversal
In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func
View Solution →Tree: Height of a Binary Tree
The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary
View Solution →Tree : Top View
Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.
View Solution →Tree: Level Order Traversal
Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F
View Solution →