Determining DNA Health
Problem Statement :
DNA is a nucleic acid present in the bodies of living things. Each piece of DNA contains a number of genes, some of which are beneficial and increase the DNA's total health. Each gene has a health value, and the total health of a DNA is the sum of the health values of all the beneficial genes that occur as a substring in the DNA. We represent genes and DNA as non-empty strings of lowercase English alphabetic letters, and the same gene may appear multiple times as a susbtring of a DNA. Given the following: An array of beneficial gene strings, . Note that these gene sequences are not guaranteed to be distinct. An array of gene health values, , where each is the health value for gene . A set of DNA strands where the definition of each strand has three components, , , and , where string is a DNA for which genes are healthy. Find and print the respective total healths of the unhealthiest (minimum total health) and healthiest (maximum total health) strands of DNA as two space-separated values on a single line. Input Format The first line contains an integer, , denoting the total number of genes. The second line contains space-separated strings describing the respective values of (i.e., the elements of ). The third line contains space-separated integers describing the respective values of (i.e., the elements of ). The fourth line contains an integer, , denoting the number of strands of DNA to process. Each of the subsequent lines describes a DNA strand in the form start end d, denoting that the healthy genes for DNA strand are and their respective correlated health values are . Output Format Print two space-separated integers describing the respective total health of the unhealthiest and the healthiest strands of DNA.
Solution :
Solution in C :
In C++ :
/*AMETHYSTS*/
#pragma comment(linker, "/STACK:1000000000")
#include <cstdio>
#include <iostream>
#include <ctime>
#include <string>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <set>
#include <cstdlib>
#include <ctime>
#include <cassert>
#include <bitset>
#include <fstream>
#include <deque>
#include <stack>
#include <climits>
#include <string>
#include <queue>
#include <memory.h>
#include <map>
#include <unordered_map>
#define ll long long
#define ld double
#define pii pair <ll, ll>
#define mp make_pair
using namespace std;
const int maxn = (int)1e5 + 10, maxm = (int)2e6 + 10;
char s[maxm];
int len;
struct point {
int ed[26];
int lnk;
int par;
int c;
vector <int> pos;
point() {
memset(ed, -1, sizeof ed);
lnk = -1;
par = -1;
c = -1;
}
};
point mas[maxm];
int posit = 0;
int my_new() {
return posit++;
}
void add(int it, int pos, int num) {
if (pos == len) {
mas[it].pos.push_back(num);
return;
}
int c = s[pos] - 'a';
if (mas[it].ed[c] == -1) {
mas[it].ed[c] = my_new();
int nit = mas[it].ed[c];
mas[nit].par = it;
mas[nit].c = c;
}
add(mas[it].ed[c], pos + 1, num);
}
int h[maxn];
int l[maxn], r[maxn];
vector <int> z[maxm];
int getlnk(int it);
int go(int it, int c) {
if (mas[it].ed[c] != -1) {
return mas[it].ed[c];
}
if (it == 0) {
mas[it].ed[c] = 0;
} else {
mas[it].ed[c] = go(getlnk(it), c);
}
return mas[it].ed[c];
}
int getlnk(int it) {
if (mas[it].lnk != -1) {
return mas[it].lnk;
}
if (it == 0 || mas[it].par == 0) {
mas[it].lnk = 0;
} else {
mas[it].lnk = go(getlnk(mas[it].par), mas[it].c);
}
return mas[it].lnk;
}
vector <int> ed[maxm];
ll ans[maxn];
ll tr[maxn];
void change(int pos, int x) {
for ( ; pos < maxn; pos |= pos + 1) {
tr[pos] += x;
}
}
ll getsum(int pos) {
ll ans = 0;
for ( ; pos >= 0; pos = (pos & (pos + 1)) - 1) {
ans += tr[pos];
}
return ans;
}
ll gores(int l, int r) {
return getsum(r) - getsum(l - 1);
}
void dfs(int v) {
for (int i = 0; i < (int)mas[v].pos.size(); i++) {
int g = mas[v].pos[i];
change(g, h[g]);
}
for (int i = 0; i < (int)z[v].size(); i++) {
int num = z[v][i];
int lm = l[num];
int rm = r[num];
ans[num] += gores(lm, rm);
}
for (int i = 0; i < (int)ed[v].size(); i++) {
int u = ed[v][i];
dfs(u);
}
for (int i = 0; i < (int)mas[v].pos.size(); i++) {
int g = mas[v].pos[i];
change(g, -h[g]);
}
}
int main() {
int n;
cin >> n;
int tr = my_new();
for (int i = 0; i < n; i++) {
scanf("%s", s);
len = strlen(s);
add(tr, 0, i);
}
for (int i = 0; i < n; i++) {
scanf("%d", &h[i]);
}
int q;
scanf("%d", &q);
for (int i = 0; i < q; i++) {
scanf("%d %d %s", &l[i], &r[i], s);
len = strlen(s);
int it = tr;
for (int j = 0; j < len; j++) {
it = go(it, s[j] - 'a');
z[it].push_back(i);
}
}
ll mins = (ll)1e18;
ll maxs = 0;
for (int i = 1; i < posit; i++) {
ed[getlnk(i)].push_back(i);
}
dfs(0);
for (int i = 0; i < q; i++) {
mins = min(mins, ans[i]);
maxs = max(maxs, ans[i]);
}
cout << mins << ' ' << maxs << endl;
return 0;
}
In Java :
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
#include <cassert>
#include <cmath>
#include <string>
#include <queue>
#include <set>
#include <map>
#include <cstdlib>
using namespace std;
#define INF 1e+9
#define mp make_pair
#define pb push_back
#define fi first
#define fs first
#define se second
#define i64 long long
#define li long long
#define lint long long
#define pii pair<int, int>
#define vi vector<int>
#define forn(i, n) for (int i = 0; i < (int)n; i++)
#define fore(i, b, e) for (int i = (int)b; i <= (int)e; i++)
struct vertex {
int next[26];
vi numbers;
int p;
char pch;
int link;
int go[26];
};
const int maxn = 2e6+5;
vertex t[maxn];
int sz;
int cost[maxn];
void init() {
t[0].p = t[0].link = -1;
memset (t[0].next, 255, sizeof t[0].next);
memset (t[0].go, 255, sizeof t[0].go);
sz = 1;
}
void add_string (const string & s, int num) {
int v = 0;
for (size_t i=0; i<s.length(); ++i) {
int c = s[i]-'a';
if (t[v].next[c] == -1) {
memset (t[sz].next, 255, sizeof t[sz].next);
memset (t[sz].go, 255, sizeof t[sz].go);
t[sz].link = -1;
t[sz].p = v;
t[sz].pch = c;
t[v].next[c] = sz++;
}
v = t[v].next[c];
}
t[v].numbers.pb(num);
}
int go (int v, int c);
int get_link (int v) {
if (t[v].link == -1) {
if (v == 0 || t[v].p == 0)
t[v].link = 0;
else
t[v].link = go (get_link (t[v].p), t[v].pch);
}
return t[v].link;
}
int go (int v, int c) {
if (t[v].go[c] == -1) {
if (t[v].next[c] != -1)
t[v].go[c] = t[v].next[c];
else
t[v].go[c] = v==0 ? 0 : go (get_link (v), c);
}
return t[v].go[c];
}
int main() {
#ifdef LOCAL
freopen("inp", "r", stdin);
//freopen("outp", "w", stdout);
#else
// freopen(TASKNAME ".in", "r", stdin);
// freopen(TASKNAME ".out", "w", stdout);
#endif
init();
int n;
scanf("%d", &n);
forn(j, n) {
string s;
cin >> s;
// cout << "s = " << s << endl;
add_string(s, j);
}
forn(j, n)
scanf("%d", &cost[j]);
int q;
scanf("%d", &q);
i64 minn = 0;
i64 maxx = 0;
forn(query, q) {
int L, R;
scanf("%d%d", &L, &R);
string s;
cin >> s;
int cur = 0;
i64 sum = 0;
for (char c : s) {
cur = go(cur, (int)(c - 'a'));
//printf("cur = %d\n", cur);
int tmp = cur;
while(tmp != 0) {
for (int x : t[tmp].numbers) {
if (x >= L && x <= R)
sum += cost[x];
//printf("%c x = %d sum = %lld\n", c, x, sum);
}
tmp = get_link(tmp);
}
}
if (query == 0 || sum > maxx)
maxx = sum;
if (query == 0 || sum < minn)
minn = sum;
}
cout << minn << " " << maxx;
}
In C :
#define _XOPEN_SOURCE 500
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
struct node {
unsigned int count;
unsigned int next;
unsigned long *value;
unsigned int *index;
struct node *child['z' - 'a' + 1];
};
void init_node(struct node *n)
{
n->value = 0;
memset(n->child, 0, sizeof(n->child));
return;
}
struct node *insert_node(struct node *r, char *s)
{
int i;
int j;
struct node *n;
n = r;
for (i = 0; s[i] != 0; i++) {
j = s[i] - 'a';
if (n->child[j] == NULL) {
n->child[j] = malloc(sizeof(struct node));
init_node(n->child[j]);
}
n = n->child[j];
}
return n;
}
int main()
{
int dc;
int f;
char **g;
int gc;
int *h;
int i;
int j;
int k;
int l;
unsigned long max;
unsigned long min;
struct node **n;
struct node *p;
char *s;
struct node *t;
unsigned long x;
s = malloc(sizeof(char) * (4 * 1024 * 1024));
scanf("%d", &gc);
g = malloc(sizeof(char *) * gc);
for (i = 0; i < gc; i++) {
scanf("%s", s);
g[i] = strdup(s);
}
h = malloc(sizeof(int) * gc);
for (i = 0; i < gc; i++) {
scanf("%d", &h[i]);
}
t = malloc(sizeof(struct node));
init_node(t);
n = malloc(sizeof(struct node *) * gc);
for (i = 0; i < gc; i++) {
n[i] = insert_node(t, g[i]);
}
for (i = 0; i < gc; i++) {
n[i]->count++;
}
for (i = 0; i < gc; i++) {
if (n[i]->next == 0) {
n[i]->value = malloc(sizeof(unsigned long) * n[i]->count);
n[i]->index = malloc(sizeof(unsigned int) * n[i]->count);
}
n[i]->value[n[i]->next] = h[i];
n[i]->index[n[i]->next] = i;
n[i]->next++;
}
scanf("%d", &dc);
min = -1;
max = 0;
while (dc > 0) {
scanf("%d %d %s", &f, &l, s);
x = 0;
for (i = 0; s[i] != 0; i++) {
p = t;
for (j = i; s[j] != 0; j++) {
p = p->child[s[j] - 'a'];
if (p == NULL) {
break;
}
for (k = 0; k < p->count; k++) {
if (p->index[k] < f) {
continue;
}
if (p->index[k] > l) {
break;
}
x += p->value[k];
}
}
}
if ((min == -1) || (x < min)) {
min = x;
}
if (x > max) {
max = x;
}
dc--;
}
printf("%ld %ld\n", min, max);
return 0;
}
In Python3 :
#!/bin/python3
'''Compact prefix trie'''
import bisect
bisect_left = bisect.bisect_left
bisect_right = bisect.bisect_right
class ScoreTable:
def __init__(self):
self.scoreIndexes = []
self.scoreSums = []
def append(self, i, s):
self.scoreIndexes.append(i)
partial = self.scoreSums[-1] if len(self.scoreSums) > 0 else 0
self.scoreSums.append(s + partial)
def getScore(self, start, end):
lo = bisect_left(self.scoreIndexes, start)
hi = bisect_right(self.scoreIndexes, end)
if hi == lo:
return 0
elif lo == 0:
return self.scoreSums[hi-1]
else:
return self.scoreSums[hi-1] - self.scoreSums[lo-1]
def longestCommonPrefix(s, t):
stop = min(len(s), len(t))
i = 0
while i < stop and s[i] == t[i]:
i += 1
return s[:i]
class TrieNode:
def __init__(self, label):
self.label = label
self.child = {}
self.scores = None
def __str__(self):
return '{' + ','.join([c + ':' + str(n) for c,n in self.child.items()]) + '}'
def insert(self, k, ix, score):
'''Insert the key k into the trie rooted at this node.'''
i = 0
node = self
while i < len(k):
if k[i] in node.child:
child = node.child[k[i]]
lcp = longestCommonPrefix(k[i:], child.label)
if len(lcp) < len(child.label):
# Split child node at longest common prefix
suffix = child.label[len(lcp):]
child.label = suffix
prefNode = TrieNode(lcp)
prefNode.child[suffix[0]] = child
node.child[lcp[0]] = prefNode
child = prefNode
node = child
i += len(lcp)
else:
newNode = TrieNode(k[i:])
node.child[k[i]] = newNode
node = newNode
i = len(k)
if not node.scores:
node.scores = ScoreTable()
node.scores.append(ix, score)
def traverse(self):
yield self
for node in self.child.values():
yield from node.traverse()
def countNodes(t):
return sum(1 for _ in t.traverse())
def soloChildren(t):
return sum(1 for n in t.traverse() if len(n.child) == 1)
def buildGeneTrie(genes, healths):
# Build compact prefix trie.
trie = TrieNode('')
for i in range(len(genes)):
trie.insert(genes[i], i, healths[i])
return trie
def checkDNA(geneTrie, dna, start, end):
# print('scoring', dna, start, end)
score = 0
z = len(dna)
for i in range(z):
node = geneTrie
j = i
while j < z and dna[j] in node.child:
node = node.child[dna[j]]
x = len(node.label)
if node.label != dna[j:j+x]: break
if node.scores:
score += node.scores.getScore(start, end)
j += x
# print('final score:', score)
return score
def main():
n_ = int(input())
genes = input().split()
healths = list(map(int, input().split()))
# print('building trie...')
geneTrie = buildGeneTrie(genes, healths)
# print(countNodes(geneTrie), 'nodes')
# print(soloChildren(geneTrie), 'nodes with only one child')
# print(geneTrie)
best = 0
worst = float('inf')
s = int(input())
for _ in range(s):
first,last,d = input().split()
first,last = int(first), int(last)
score = checkDNA(geneTrie, d, first, last)
# if score < worst: print('***', d, first, last, score)
best = max(best, score)
worst = min(worst, score)
print(worst, best)
if __name__ == '__main__':
main()
# import cProfile
# cProfile.run('main()', sort='cumtime')
View More Similar Problems
Fibonacci Numbers Tree
Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T
View Solution →Pair Sums
Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v
View Solution →Lazy White Falcon
White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi
View Solution →Ticket to Ride
Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game. There are n cities on the map and n - 1 road plans. Each road plan consists of the following: Two cities which can be directly connected by a road. The length of the proposed road. The entire road plan is designed in such a way that if o
View Solution →Heavy Light White Falcon
Our lazy white falcon finally decided to learn heavy-light decomposition. Her teacher gave an assignment for her to practice this new technique. Please help her by solving this problem. You are given a tree with N nodes and each node's value is initially 0. The problem asks you to operate the following two types of queries: "1 u x" assign x to the value of the node . "2 u v" print the maxim
View Solution →Number Game on a Tree
Andy and Lily love playing games with numbers and trees. Today they have a tree consisting of n nodes and n -1 edges. Each edge i has an integer weight, wi. Before the game starts, Andy chooses an unordered pair of distinct nodes, ( u , v ), and uses all the edge weights present on the unique path from node u to node v to construct a list of numbers. For example, in the diagram below, Andy
View Solution →