Count Nodes in Complete Binary Tree - Google Top Interview Questions
Problem Statement :
Given a complete binary tree root, return the number of nodes in the tree. This should be done in \mathcal{O}((\log n)^2)O((logn) 2 ). Constraints n ≤ 100,000 where n is the number of nodes in root Example 1 Input root = [1, [2, [4, null, null], [5, null, null]], [3, null, null]] Output 5 Example 2 Input root = [1, [2, [4, null, null], [5, null, null]], [3, [6, null, null], [7, null, null]]] Output 7
Solution :
Solution in C++ :
int solve(Tree* tree) {
int right_h = 0, left_h = 0;
auto* curr = tree;
while (curr) right_h++, curr = curr->right;
curr = tree;
while (curr) left_h++, curr = curr->left;
if (right_h ==
left_h) { // if left_height and right_height is same, then the tree has (2**h - 1) nodes
return (1 << right_h) - 1;
}
// If not same, then again make a recursive call on the left and right subtree
return solve(tree->left) + solve(tree->right) + 1;
}
Solution in Java :
import java.util.*;
/**
* public class Tree {
* int val;
* Tree left;
* Tree right;
* }
*/
class Solution {
public int solve(Tree tree) {
int lo = 1;
int hi = 100000;
while (lo < hi) {
int m = (lo + hi + 1) / 2;
boolean exists = check(tree, m);
if (exists)
lo = m;
else
hi = m - 1;
}
return lo;
}
public boolean check(Tree t, int m) {
boolean active = false;
for (int i = 17; i >= 0; i--) {
int cur = m & (1 << i);
if (!active) {
if (cur > 0)
active = true;
} else {
if (cur == 0)
t = t.left;
else
t = t.right;
if (t == null)
return false;
}
}
return true;
}
}
Solution in Python :
class Solution:
def solve(self, tree):
# function to find the left most depth or the right most depth
def extreme(root, left):
height = 1
if left:
while root:
root = root.left
height += 1
else:
while root:
root = root.right
height += 1
return height
# main function to solve the problem
def traverse(root):
if not root:
return 0
l = extreme(root.left, True)
r = extreme(root.right, False)
if l == r: # encountered a full binary tree
return 2 ** l - 1
else:
return traverse(root.left) + traverse(root.right) + 1
ans = traverse(tree)
return ans
View More Similar Problems
Self-Driving Bus
Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever
View Solution →Unique Colors
You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti
View Solution →Fibonacci Numbers Tree
Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T
View Solution →Pair Sums
Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v
View Solution →Lazy White Falcon
White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi
View Solution →Ticket to Ride
Simon received the board game Ticket to Ride as a birthday present. After playing it with his friends, he decides to come up with a strategy for the game. There are n cities on the map and n - 1 road plans. Each road plan consists of the following: Two cities which can be directly connected by a road. The length of the proposed road. The entire road plan is designed in such a way that if o
View Solution →