Climbing the Leaderboard
Problem Statement :
An arcade game player wants to climb to the top of the leaderboard and track their ranking. The game uses Dense Ranking, so its leaderboard works like this: The player with the highest score is ranked number 1 on the leaderboard. Players who have equal scores receive the same ranking number, and the next player(s) receive the immediately following ranking number. Example ranked = [100, 90, 90, 80] player = [70, 80, 105] The ranked players will have ranks 1, 2, 2, and 3, respectively. If the player's scores are 70, 80 and 105, their rankings after each game are 4th, 3rd and 1st. Return [4, 3, 1]. Function Description Complete the climbingLeaderboard function in the editor below. climbingLeaderboard has the following parameter(s): int ranked[n]: the leaderboard scores int player[m]: the player's scores Returns int[m]: the player's rank after each new score Input Format The first line contains an integer n, the number of players on the leaderboard. The next line contains n space-separated integers ranked[i], the leaderboard scores in decreasing order. The next line contains an integer, m, the number games the player plays. The last line contains m space-separated integers player[j], the game scores. Constraints 1 <= n, m <= 2 * 10^5 0 <= ranked[i], player[j] <= 10^9 for 0 <= i, j < n The existing leaderboard, ranked, is in descending order. The player's scores, player, are in ascending order.
Solution :
Solution in C :
python 3 :
#!/bin/python3
import sys
import bisect
n = int(input().strip())
scores = [int(scores_temp) for scores_temp in input().strip().split(' ')]
m = int(input().strip())
alice = [int(alice_temp) for alice_temp in input().strip().split(' ')]
# your code goes here
scores = list(sorted(set(scores)))
#print('scores=%s' % scores, file = sys.stderr)
#print('alice=%s' % alice, file = sys.stderr)
aa = [bisect.bisect_right(scores, a) for a in alice]
#print('aa=%s' % aa, file = sys.stderr)
for a in aa:
v = len(scores) + 1 - a
print(v)
Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
Stack<Integer> scores = new Stack<>();
scores.push(in.nextInt());
for (int i = 1; i < n; i++) {
int cur = in.nextInt();
if (!scores.peek().equals(cur)) scores.push(cur);
}
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int cur = in.nextInt();
while (scores.size() > 0 && cur > scores.peek()) scores.pop();
System.out.println(scores.size() +(scores.size() > 0 && scores.peek().equals(cur) ? 0 : 1));
}
}
}
C++ :
#include <ios>
#include <iostream>
#include <vector>
#include <algorithm>
std::vector<int> vec;
int main()
{
int n, q, v;
std::cin >> n;
for (int i = 0; i < n; i++)
{
std::cin >> v;
vec.push_back(v);
}
std::sort(vec.begin(), vec.end());
vec.resize(std::distance(vec.begin(), std::unique(vec.begin(), vec.end())));
std::cin >> q;
while (q--)
{
std::cin >> v;
std::cout << std::distance(std::upper_bound(vec.begin(), vec.end(), v), vec.end())+1 << '\n';
}
}
C :
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <stdbool.h>
int main(){
int n;
scanf("%d",&n);
int *scores = malloc(sizeof(int) * n);
for(int scores_i = 0; scores_i < n; scores_i++){
scanf("%d",&scores[scores_i]);
if(scores_i){
if(scores[scores_i]==scores[scores_i-1]){
scores_i--;
n--;
}
}
}
//printf("%d\n",n);//
int m;
scanf("%d",&m);
int *alice = malloc(sizeof(int) * m);
for(int alice_i = 0; alice_i < m; alice_i++){
scanf("%d",&alice[alice_i]);
}
int rank=n;
for(int j=0; j<m; j++){
while(alice[j]>=scores[rank-1] && rank>0){
rank--;
if(rank==0) break;
}
printf("%d\n",rank+1);
}
// your code goes here
return 0;
}
View More Similar Problems
Poisonous Plants
There are a number of plants in a garden. Each of the plants has been treated with some amount of pesticide. After each day, if any plant has more pesticide than the plant on its left, being weaker than the left one, it dies. You are given the initial values of the pesticide in each of the plants. Determine the number of days after which no plant dies, i.e. the time after which there is no plan
View Solution →AND xor OR
Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value
View Solution →Waiter
You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the
View Solution →Queue using Two Stacks
A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que
View Solution →Castle on the Grid
You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):
View Solution →Down to Zero II
You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.
View Solution →