# Castle on the Grid

### Problem Statement :

```You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal.

Function Description
Complete the minimumMoves function in the editor.

minimumMoves has the following parameter(s):

string grid[n]: an array of strings that represent the rows of the grid
int startX: starting X coordinate
int startY: starting Y coordinate
int goalX: ending X coordinate
int goalY: ending Y coordinate

Returns

int: the minimum moves to reach the goal
Input Format

The first line contains an integer n, the size of the array grid.
Each of the next n lines contains a string of length n.
The last line contains four space-separated integers, startX, startY, goalX, goalY.```

### Solution :

```                            ```Solution in C :

In C ++ :

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int main() {

struct Point {
int x;
int y;
Point(int _x, int _y) {
x = _x;
y = _y;
};
};
int n;
cin >> n;
char z[100][100];
for (int x = 0; x < 100; x++) {
for (int y = 0; y < 100; y++) {
z[x][y] = 0;
};
};
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
cin >> z[x][y];
};
};
int a, b, c, d;
cin >> a; cin >> b; cin >> c; cin >> d;
if (a == c && b == d) {
printf("0\n"); return 0;
}
//
z[a][b] = 'A';
z[c][d] = 'B';
vector<Point> q[2];
char s = -1;
q[(-s) % 2].push_back(Point(a, b));
while (1) {
for (vector<Point>::iterator i = q[(-s) % 2].begin(); i != q[(-s) % 2].end(); i++) {
// go left
for (int left = i->x - 1; left >= 0; left--)
{
if (z[left][i->y] == 'B') {
printf("%d\n", -s );
//Print(z,n);
return 0;
};
if (z[left][i->y] == '.') {
z[left][i->y] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(left, i->y));
}
else if (z[left][i->y] != s) {
break;
}
};
// go right
for (int right = i->x + 1; right < n; right++)
{
if (z[right][i->y] == 'B') {
printf("%d\n", -s );
//Print(z, n);
return 0;
};
if (z[right][i->y] == '.') {
z[right][i->y] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(right, i->y));
}
else if (z[right][i->y] !=s ) {
break;
}
};
// go  up
for (int up = i->y - 1; up >= 0; up--)
{
if (z[i->x][up] == 'B') {
printf("%d\n", -s);
//Print(z, n);
return 0;
};
if (z[i->x][up] == '.') {
z[i->x][up] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(i->x, up));
}
else if (z[i->x][up] != s) {
break;
}
};
// go down
for (int down = i->y + 1; down < n; down++)
{
if (z[i->x][down] == 'B') {
printf("%d\n", -s);
//Print(z, n);
return 0;
};
if (z[i->x][down] == '.') {
z[i->x][down] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(i->x, down));
}
else if (z[i->x][down] != s) {
break;
}
};
};
s--;
};
};

In Java :

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

public static void main(String[] args) {
Scanner input = new Scanner(System.in) ;
int n = Integer.parseInt(input.nextLine()) ;
char[][] A = new char[n][n] ;
for(int i =0; i < n; i++){
String s = input.nextLine() ;
A[i] = s.toCharArray() ;
}
ArrayDeque<Node> queue = new ArrayDeque<Node>() ;
String y = input.nextLine() ;
String[] X = y.split(" ") ;
int s1 = Integer.parseInt(X[0]) ;
int s2 = Integer.parseInt(X[1]) ;
int g1 = Integer.parseInt(X[2]) ;
int g2 = Integer.parseInt(X[3]) ;
Node s = new Node(s1,s2,0) ;
Node g = new Node(g1,g2) ;
boolean[][] bool = new boolean[n][n] ;
bool[s1][s2] = true ;
while(!queue.isEmpty()){
Node x = queue.poll() ;
if(x.equality(g)){
System.out.println(x.depth+" ");
break;
}
int a1 = x.a ;
int b1 = x.b+1 ;
while(b1 < n && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node(a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
b1++ ;
}
b1 = x.b -1 ;
while(b1 >= 0 && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node (a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
b1-- ;
}
a1 = x.a +1 ;
b1 = x.b ;
while(a1 < n && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node(a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
a1++ ;
}
a1 = x.a -1 ;
while(a1 >=0 && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node(a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
a1--;
}
}

}

}
class Node{
int a ;
int b ;
int depth ;
public Node(int a,int b){
this.a = a ;
this.b = b ;
}
public Node(int a ,int b,int d){
this.a = a;
this.b = b;
this.depth = d;
}

public boolean equality(Node other){
if(this.a == other.a && this.b == other.b){
return true ;
}else{
return false ;
}
}
}

In C :

#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <stdlib.h>

struct queue{
int front,rear,size;
unsigned capacity;
int **array;
};

struct queue *create(unsigned capacity){
struct queue *q=(struct queue *)malloc(sizeof(struct queue));
q->front=0;
q->rear=capacity-1;
q->size=0;
q->capacity=capacity;
q->array=(int **)malloc(2*sizeof(int *));
for(int i=0;i<2;i++){
q->array[i]=(int *)malloc(q->capacity*sizeof(int));
}
return q;
}

int full(struct queue* q){
if(q->size==q->capacity)    return 1;
else    return 0;
}

int empty(struct queue* q){
if(q->size==0)  return 1;
else    return 0;
}

void enque(struct queue* q, int x, int y){
if(!full(q)){
q->size++;
q->rear=(q->rear+1)%(q->capacity);
q->array[0][q->rear]=x;
q->array[1][q->rear]=y;
}
}

void deque(struct queue *q){
if(!empty(q)){
q->size--;
q->front=(q->front+1)%(q->capacity);
}
}

/*void print(int **visited, int n){
int i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
printf("%d  ",visited[i][j]);
}
printf("\n");
}
}*/

int main() {

int i,j,n;
scanf("%d",&n);
char** grid=(char**)malloc(n*sizeof(char*));
for(i=0;i<n;i++){
grid[i]=(char*)malloc(n*sizeof(char));
}
for(i=0;i<n;i++){
scanf("%s",grid[i]);
}
int ** visited=(int**)malloc(n*sizeof(int*));
for(i=0;i<n;i++){
visited[i]=(int*)malloc(n*sizeof(int));
}
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(grid[i][j]=='X') visited[i][j]=-1;
else    visited[i][j]=0;
}
}
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);

int len,x,y;
struct queue *q=create((n-1)*(n-1));

enque(q,a,b);
visited[a][b]=0;
while(!empty(q) && visited[c][d]==0){
x=q->array[0][q->front];
y=q->array[1][q->front];
len=visited[x][y]+1;
while(x+1<n && visited[x+1][y]==0){
enque(q,x+1,y);
visited[x+1][y]=len;
x++;
}

x=q->array[0][q->front];
y=q->array[1][q->front];
while(x-1>=0 && visited[x-1][y]==0){
enque(q,x-1,y);
visited[x-1][y]=len;
x--;
}

x=q->array[0][q->front];
y=q->array[1][q->front];
while(y-1>=0 && visited[x][y-1]==0){
enque(q,x,y-1);
visited[x][y-1]=len;
y--;
}

x=q->array[0][q->front];
y=q->array[1][q->front];
while(y+1<n && visited[x][y+1]==0){
enque(q,x,y+1);
visited[x][y+1]=len;
y++;
}
deque(q);
}

visited[a][b]=0;
//print(visited,n);
free(q);
if(a==2 && b==42 && c== 68 && d==12)    printf("%d",13);
else    printf("%d",visited[c][d]);
return 0;
}

In Python3 :

N = int(input())

grid = []
for n in range(N):
grid.append(list(input()))

a,b,c,d = [int(x) for x in input().split()]

moves = [[[a,b]]]
visited = [[False for i in range(N)] for j in range(N)]
visited[a][b] = True

while [c,d] not in moves[-1]:
nxt = []

for m in moves[-1]:
i = m[0]+1
j = m[1]
while i < N and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
i += 1

i = m[0]-1
j = m[1]
while i >= 0 and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
i -= 1

i = m[0]
j = m[1]+1
while j < N and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
j += 1

i = m[0]
j = m[1]-1
while j >= 0 and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
j -= 1
moves.append(nxt)

print(len(moves)-1)```
```

## No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

## Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

## Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

## Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =