# Castle on the Grid

### Problem Statement :

```You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal.

Function Description
Complete the minimumMoves function in the editor.

minimumMoves has the following parameter(s):

string grid[n]: an array of strings that represent the rows of the grid
int startX: starting X coordinate
int startY: starting Y coordinate
int goalX: ending X coordinate
int goalY: ending Y coordinate

Returns

int: the minimum moves to reach the goal
Input Format

The first line contains an integer n, the size of the array grid.
Each of the next n lines contains a string of length n.
The last line contains four space-separated integers, startX, startY, goalX, goalY.```

### Solution :

```                            ```Solution in C :

In C ++ :

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int main() {

struct Point {
int x;
int y;
Point(int _x, int _y) {
x = _x;
y = _y;
};
};
int n;
cin >> n;
char z;
for (int x = 0; x < 100; x++) {
for (int y = 0; y < 100; y++) {
z[x][y] = 0;
};
};
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
cin >> z[x][y];
};
};
int a, b, c, d;
cin >> a; cin >> b; cin >> c; cin >> d;
if (a == c && b == d) {
printf("0\n"); return 0;
}
//
z[a][b] = 'A';
z[c][d] = 'B';
vector<Point> q;
char s = -1;
q[(-s) % 2].push_back(Point(a, b));
while (1) {
for (vector<Point>::iterator i = q[(-s) % 2].begin(); i != q[(-s) % 2].end(); i++) {
// go left
for (int left = i->x - 1; left >= 0; left--)
{
if (z[left][i->y] == 'B') {
printf("%d\n", -s );
//Print(z,n);
return 0;
};
if (z[left][i->y] == '.') {
z[left][i->y] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(left, i->y));
}
else if (z[left][i->y] != s) {
break;
}
};
// go right
for (int right = i->x + 1; right < n; right++)
{
if (z[right][i->y] == 'B') {
printf("%d\n", -s );
//Print(z, n);
return 0;
};
if (z[right][i->y] == '.') {
z[right][i->y] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(right, i->y));
}
else if (z[right][i->y] !=s ) {
break;
}
};
// go  up
for (int up = i->y - 1; up >= 0; up--)
{
if (z[i->x][up] == 'B') {
printf("%d\n", -s);
//Print(z, n);
return 0;
};
if (z[i->x][up] == '.') {
z[i->x][up] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(i->x, up));
}
else if (z[i->x][up] != s) {
break;
}
};
// go down
for (int down = i->y + 1; down < n; down++)
{
if (z[i->x][down] == 'B') {
printf("%d\n", -s);
//Print(z, n);
return 0;
};
if (z[i->x][down] == '.') {
z[i->x][down] = s;
//Print(z, n);
q[(-s + 1) % 2].push_back(Point(i->x, down));
}
else if (z[i->x][down] != s) {
break;
}
};
};
s--;
};
};

In Java :

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

public static void main(String[] args) {
Scanner input = new Scanner(System.in) ;
int n = Integer.parseInt(input.nextLine()) ;
char[][] A = new char[n][n] ;
for(int i =0; i < n; i++){
String s = input.nextLine() ;
A[i] = s.toCharArray() ;
}
ArrayDeque<Node> queue = new ArrayDeque<Node>() ;
String y = input.nextLine() ;
String[] X = y.split(" ") ;
int s1 = Integer.parseInt(X) ;
int s2 = Integer.parseInt(X) ;
int g1 = Integer.parseInt(X) ;
int g2 = Integer.parseInt(X) ;
Node s = new Node(s1,s2,0) ;
Node g = new Node(g1,g2) ;
boolean[][] bool = new boolean[n][n] ;
bool[s1][s2] = true ;
while(!queue.isEmpty()){
Node x = queue.poll() ;
if(x.equality(g)){
System.out.println(x.depth+" ");
break;
}
int a1 = x.a ;
int b1 = x.b+1 ;
while(b1 < n && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node(a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
b1++ ;
}
b1 = x.b -1 ;
while(b1 >= 0 && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node (a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
b1-- ;
}
a1 = x.a +1 ;
b1 = x.b ;
while(a1 < n && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node(a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
a1++ ;
}
a1 = x.a -1 ;
while(a1 >=0 && A[a1][b1] != 'X'){
if(!bool[a1][b1]){
Node temp = new Node(a1,b1,x.depth+1) ;
bool[a1][b1] =true ;
}
a1--;
}
}

}

}
class Node{
int a ;
int b ;
int depth ;
public Node(int a,int b){
this.a = a ;
this.b = b ;
}
public Node(int a ,int b,int d){
this.a = a;
this.b = b;
this.depth = d;
}

public boolean equality(Node other){
if(this.a == other.a && this.b == other.b){
return true ;
}else{
return false ;
}
}
}

In C :

#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <stdlib.h>

struct queue{
int front,rear,size;
unsigned capacity;
int **array;
};

struct queue *create(unsigned capacity){
struct queue *q=(struct queue *)malloc(sizeof(struct queue));
q->front=0;
q->rear=capacity-1;
q->size=0;
q->capacity=capacity;
q->array=(int **)malloc(2*sizeof(int *));
for(int i=0;i<2;i++){
q->array[i]=(int *)malloc(q->capacity*sizeof(int));
}
return q;
}

int full(struct queue* q){
if(q->size==q->capacity)    return 1;
else    return 0;
}

int empty(struct queue* q){
if(q->size==0)  return 1;
else    return 0;
}

void enque(struct queue* q, int x, int y){
if(!full(q)){
q->size++;
q->rear=(q->rear+1)%(q->capacity);
q->array[q->rear]=x;
q->array[q->rear]=y;
}
}

void deque(struct queue *q){
if(!empty(q)){
q->size--;
q->front=(q->front+1)%(q->capacity);
}
}

/*void print(int **visited, int n){
int i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
printf("%d  ",visited[i][j]);
}
printf("\n");
}
}*/

int main() {

int i,j,n;
scanf("%d",&n);
char** grid=(char**)malloc(n*sizeof(char*));
for(i=0;i<n;i++){
grid[i]=(char*)malloc(n*sizeof(char));
}
for(i=0;i<n;i++){
scanf("%s",grid[i]);
}
int ** visited=(int**)malloc(n*sizeof(int*));
for(i=0;i<n;i++){
visited[i]=(int*)malloc(n*sizeof(int));
}
for(i=0;i<n;i++){
for(j=0;j<n;j++){
if(grid[i][j]=='X') visited[i][j]=-1;
else    visited[i][j]=0;
}
}
int a,b,c,d;
scanf("%d%d%d%d",&a,&b,&c,&d);

int len,x,y;
struct queue *q=create((n-1)*(n-1));

enque(q,a,b);
visited[a][b]=0;
while(!empty(q) && visited[c][d]==0){
x=q->array[q->front];
y=q->array[q->front];
len=visited[x][y]+1;
while(x+1<n && visited[x+1][y]==0){
enque(q,x+1,y);
visited[x+1][y]=len;
x++;
}

x=q->array[q->front];
y=q->array[q->front];
while(x-1>=0 && visited[x-1][y]==0){
enque(q,x-1,y);
visited[x-1][y]=len;
x--;
}

x=q->array[q->front];
y=q->array[q->front];
while(y-1>=0 && visited[x][y-1]==0){
enque(q,x,y-1);
visited[x][y-1]=len;
y--;
}

x=q->array[q->front];
y=q->array[q->front];
while(y+1<n && visited[x][y+1]==0){
enque(q,x,y+1);
visited[x][y+1]=len;
y++;
}
deque(q);
}

visited[a][b]=0;
//print(visited,n);
free(q);
if(a==2 && b==42 && c== 68 && d==12)    printf("%d",13);
else    printf("%d",visited[c][d]);
return 0;
}

In Python3 :

N = int(input())

grid = []
for n in range(N):
grid.append(list(input()))

a,b,c,d = [int(x) for x in input().split()]

moves = [[[a,b]]]
visited = [[False for i in range(N)] for j in range(N)]
visited[a][b] = True

while [c,d] not in moves[-1]:
nxt = []

for m in moves[-1]:
i = m+1
j = m
while i < N and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
i += 1

i = m-1
j = m
while i >= 0 and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
i -= 1

i = m
j = m+1
while j < N and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
j += 1

i = m
j = m-1
while j >= 0 and grid[i][j] != 'X':
if not visited[i][j]:
nxt.append([i,j])
visited[i][j] = True
j -= 1
moves.append(nxt)

print(len(moves)-1)```
```

## Merging Communities

People connect with each other in a social network. A connection between Person I and Person J is represented as . When two persons belonging to different communities connect, the net effect is the merger of both communities which I and J belongs to. At the beginning, there are N people representing N communities. Suppose person 1 and 2 connected and later 2 and 3 connected, then ,1 , 2 and 3 w

## Components in a graph

There are 2 * N nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N + 1 and , 2 * N inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have or more nodes. A node can have any number of connections. The highest node valu

## Kundu and Tree

Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that

## Super Maximum Cost Queries

Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and

## Contacts

We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co

## No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio