**Down to Zero II**

### Problem Statement :

You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q. The next Q lines each contain an integer, N. Output Format Output Q lines. Each line containing the minimum number of moves required to reduce the value of N to 0 .

### Solution :

` ````
Solution in C :
In C ++ :
#include <bits/stdc++.h>
using namespace std;
int main() {
/* Enter your code here. Read input from STDIN. Print output to STDOUT */
int test;
cin >> test;
while (test--){
int n ;
cin >> n ;
int steps = 0;
if (n==0){
cout << 0 << endl;
continue;
}
if (n==1){
cout << 1 << endl;
continue;
}
vector<int> dist(n+1,0);
queue<int> q;
q.push(n) ;
dist[n] = 1 ;
while (1){
int element = q.front();
q.pop();
if(element == 2){
cout << dist[2] + 1 << endl;
break ;
}
if (dist[element-1] == 0 ){
dist [element-1] = dist[element]+1;
q.push(element-1);
}
for (int i=2; i*i<=element; i++){
if (element%i == 0){
int maxfrac = element/i;
if (dist[maxfrac] == 0) dist [maxfrac] = dist[element] + 1, q.push(maxfrac);
}
}
}
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
private static int MAXSZ = (int)(1E6+1);
private static int[] dp;
private static int minimumMove(int n) {
if(n == 0) return 0;
if(dp[n] != -1) return dp[n];
int minMove = Integer.MAX_VALUE;
int sq = (int) Math.sqrt(n);
for(int i = 2; i <= sq; i++) {
if(n % i == 0) {
minMove = Math.min(minMove, 1+minimumMove(n/i));
}
}
minMove = Math.min(minMove, 1+ minimumMove(n-1));
return (dp[n] = minMove);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
dp = new int[MAXSZ];
Arrays.fill(dp, -1);
dp[0] = 0; dp[1] = 1; dp[2] = 2;
int Q = sc.nextInt();
for(int q = 1; q <= Q; q++) {
int n = sc.nextInt();
System.out.println(minimumMove(n));
}
}
}
In C :
#include <stdio.h>
#include <stdio.h>
#include <string.h>
unsigned long long min(unsigned long long x, unsigned long long y);
unsigned long long ans[1000001];
int main(){
int Q,N,i,j;
memset(ans,-1,sizeof(ans));
ans[0]=0;
for(i=0;i<1000000;i++){
ans[i+1]=min(ans[i+1],ans[i]+1);
for(j=2;j<=i && i*(unsigned long long)j<1000001;j++)
ans[i*j]=min(ans[i*j],ans[i]+1);
}
scanf("%d",&Q);
while(Q--){
scanf("%d",&N);
printf("%llu\n",ans[N]);
}
return 0;
}
unsigned long long min(unsigned long long x, unsigned long long y){
return (x>y)?y:x;
}
In Python3 :
import math
import time
start = time.time()
def Sol( N ):
if N == 0: return 0
Q = [ (N,0) ]
setQ = [ 0 ] * N
while Q:
N, steps = Q.pop(0)
if N == 1: return steps+1
div = int(math.sqrt( N ))
while div > 1:
if N % div == 0 and not setQ[N // div]:
Q.append( (N // div, steps+1) )
setQ[ N // div ] = 1
div -= 1
if not setQ[N-1]:
Q.append( (N-1, steps+1) )
setQ[ N-1 ] = 1
Q = int(input())
for _ in range(Q):
N = int(input())
print(Sol(N))
```

## View More Similar Problems

## Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →## Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →## Array and simple queries

Given two numbers N and M. N indicates the number of elements in the array A[](1-indexed) and M indicates number of queries. You need to perform two types of queries on the array A[] . You are given queries. Queries can be of two types, type 1 and type 2. Type 1 queries are represented as 1 i j : Modify the given array by removing elements from i to j and adding them to the front. Ty

View Solution →## Median Updates

The median M of numbers is defined as the middle number after sorting them in order if M is odd. Or it is the average of the middle two numbers if M is even. You start with an empty number list. Then, you can add numbers to the list, or remove existing numbers from it. After each add or remove operation, output the median. Input: The first line is an integer, N , that indicates the number o

View Solution →## Maximum Element

You have an empty sequence, and you will be given N queries. Each query is one of these three types: 1 x -Push the element x into the stack. 2 -Delete the element present at the top of the stack. 3 -Print the maximum element in the stack. Input Format The first line of input contains an integer, N . The next N lines each contain an above mentioned query. (It is guaranteed that each

View Solution →## Balanced Brackets

A bracket is considered to be any one of the following characters: (, ), {, }, [, or ]. Two brackets are considered to be a matched pair if the an opening bracket (i.e., (, [, or {) occurs to the left of a closing bracket (i.e., ), ], or }) of the exact same type. There are three types of matched pairs of brackets: [], {}, and (). A matching pair of brackets is not balanced if the set of bra

View Solution →