# AND Product

### Problem Statement :

```Consider two non-negative long integers,  and , where . The bitwise AND of all long integers in the inclusive range between  and  can be expressed as , where  is the bitwise AND operator.

Given  pairs of long integers,  and , compute and print the bitwise AND of all natural numbers in the inclusive range between  and .

For example, if  and , the calculation is .

Function Description

Complete the andProduct in the editor below. It should return the computed value as an integer.

andProduct has the following parameter(s):

a: an integer
b: an integer
Input Format

The first line contains a single integer , the number of intervals to test.
Each of the next  lines contains two space-separated integers  and .

Output Format

For each pair of long integers, print the bitwise AND of all numbers in the inclusive range between  and  on a new line.```

### Solution :

```                            ```Solution in C :

In C :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

int main()
{
int t;
unsigned int a, b;

scanf("%d", &t);

while (t--) {
scanf("%u%u", &a, &b);
printf("%u\n", a);
}

return 0;
}```
```

```                        ```Solution in C++ :

In  C++  :

#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ll;
ll a, b, o = 1;

bool all(ll x, ll a, ll b) {
return (a&x) && (b&x) && (b - a) < x;
}

int main() {
int T; scanf("%d", &T); for(int ks = 1; ks <= T; ++ks) {
scanf("%llu%llu", &a, &b);
ll bb = 0;
for(int i = 0; i < 63; ++i) {
ll t = o << i;
if(all(t, a, b)) bb |= t;
}
printf("%llu\n", bb);
}
return 0;
}```
```

```                        ```Solution in Java :

In  Java :

import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;

public class B {
static InputStream is;
static PrintWriter out;
static String INPUT = "";

static void solve()
{
for(int T = ni();T >= 1;T--){
long a = nl(), b = nl();
long ret = 0;
for(int i = 32;i >= 0;i--){
if((a^b)<<~i>=0){
ret |= a&(1L<<i);
}else{
break;
}
}
out.println(ret);
}
}

public static void main(String[] args) throws Exception
{
long S = System.currentTimeMillis();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);

solve();
out.flush();
long G = System.currentTimeMillis();
tr(G-S+"ms");
}

private static boolean eof()
{
if(lenbuf == -1)return true;
int lptr = ptrbuf;
while(lptr < lenbuf)if(!isSpaceChar(inbuf[lptr++]))return false;

try {
is.mark(1000);
while(true){
if(b == -1){
is.reset();
return true;
}else if(!isSpaceChar(b)){
is.reset();
return false;
}
}
} catch (IOException e) {
return true;
}
}

private static byte[] inbuf = new byte[1024];
static int lenbuf = 0, ptrbuf = 0;

{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}

private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }

private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }

private static String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
}
return sb.toString();
}

private static char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
}
return n == p ? buf : Arrays.copyOf(buf, p);
}

private static char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}

private static int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}

private static int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
}

while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
}

private static long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
}

while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
}
}

private static void tr(Object... o) { if(INPUT.length() != 0)System.out.println(Arrays.deepToString(o)); }
}```
```

```                        ```Solution in Python :

In  Python3 :

T = int(input())

for _ in range(T) :
A,B = (int(_) for _ in input().split())
i,C = -1,A^B
while C > 0 :
C >>= 1
i += 1
print(A & (2**32-2**i))```
```

## Tree : Top View

Given a pointer to the root of a binary tree, print the top view of the binary tree. The tree as seen from the top the nodes, is called the top view of the tree. For example : 1 \ 2 \ 5 / \ 3 6 \ 4 Top View : 1 -> 2 -> 5 -> 6 Complete the function topView and print the resulting values on a single line separated by space.

## Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

## Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

## Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

## Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

## Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from