The product mystery - Codechef


Problem Statement :


Given two positive numbers B and C, what is the minimum positive value of A, such that A⋅B is divisible by C.

Here, A⋅B denotes the value obtained when A is multiplied by B.

Input Format

The first line will contain an integer T - number of test cases. Then the test cases follow.
The first and only line of each test case contains two integers B and C.

Output Format

For each test case, output the minimum value of A such that A⋅B is divisible by C.

Constraints

1≤T≤105
1≤B,C≤109


Sample Input 1 

2
2 4
8 12

Sample Output 1 
2
3



Solution :



title-img




                        Solution in C++ :

#include<bits/stdc++.h>
#include <iterator>
#include <iostream>
#include <numeric>
#include <math.h>
#define ll long long
#define ull long
#define mpa make_pair
#define pb push_back
#define ff first
#define pii pair<ll,ll>
#define dd long double
#define trace(x) cerr << #x << " : " << x << endl
#define ss second
#define boost ios_base::sync_with_stdio(0)
#define forp(i,a,b) for(ll i=a;i<=b;i++)
#define rep(i,n)    for(ll i=0;i<n;++i)
#define ren(i,n)    for(ll i=n-1;i>=0;i--)
#define forn(i,a,b) for(ll i=a;i>=b;i--)
#define all(c) (c).begin(),(c).end()
#define tr(c,i) for(typeof((c).begin()) i = (c).begin(); i != (c).end();
#define sc(x) scanf("%lld",&x)
#define clr(x,val) memset(x,val,sizeof(x))
#define pr(x) printf("%lld\n",x) 
#define gc getchar
#define pdd pair<dd,dd>
#define prec(x) cout<<fixed<<setprecision(x)
#define fre freopen("input.txt","r",stdin),freopen("output.txt","w",stdout)
#define arr array 
using namespace std;
ll a[200005];
void solve(ll tc){
   ll b,c;
   cin>>b>>c;
   ll gc=__gcd(b,c);
   cout<<c/gc<<endl;

}

int main(){
     boost;

    //pre_cum();
    //prec(20);
	//fre;


 



    ll t=1;
    ll tc=1;
    cin>>t;

	while(t--){
		solve(tc);
        tc++;
	}

    return 0;
    
     
}
                    


                        Solution in Java :

import java.util.*;
import java.io.*;

public class Main {

    static long startTime = System.currentTimeMillis();

    // for global initializations and methods starts here

    // global initialisations and methods end here

    static void run() {
        boolean tc = true;
        AdityaFastIO r = new AdityaFastIO();
        //FastReader r = new FastReader();

        try (OutputStream out = new BufferedOutputStream(System.out)) {

            //long startTime = System.currentTimeMillis();

            int testcases = tc ? r.ni() : 1;
            int tcCounter = 1;
            // Hold Here Sparky------------------->>>
            // Solution Starts Here

            start:
            while (testcases-- > 0) {

                // a*b = c

                long b = r.nl();
                long c = r.nl();

                out.write((c / gcd(b, c) + " ").getBytes());
                out.write(("\n").getBytes());
            }
            // Solution Ends Here
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    static class AdityaFastIO {
        final private int BUFFER_SIZE = 1 << 16;
        private final DataInputStream din;
        private final byte[] buffer;
        private int bufferPointer, bytesRead;
        public BufferedReader br;
        public StringTokenizer st;

        public AdityaFastIO() {
            br = new BufferedReader(new InputStreamReader(System.in));
            din = new DataInputStream(System.in);
            buffer = new byte[BUFFER_SIZE];
            bufferPointer = bytesRead = 0;
        }

        public AdityaFastIO(String file_name) throws IOException {
            din = new DataInputStream(new FileInputStream(file_name));
            buffer = new byte[BUFFER_SIZE];
            bufferPointer = bytesRead = 0;
        }

        public String word() {
            while (st == null || !st.hasMoreElements()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return st.nextToken();
        }

        public String line() {
            String str = "";
            try {
                str = br.readLine();
            } catch (IOException e) {
                e.printStackTrace();
            }
            return str;
        }

        public String readLine() throws IOException {
            byte[] buf = new byte[100000001]; // line length
            int cnt = 0, c;
            while ((c = read()) != -1) {
                if (c == '\n') break;
                buf[cnt++] = (byte) c;
            }
            return new String(buf, 0, cnt);
        }

        public int ni() throws IOException {
            int ret = 0;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (neg) return -ret;
            return ret;
        }

        public long nl() throws IOException {
            long ret = 0;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (neg) return -ret;
            return ret;
        }

        public double nd() throws IOException {
            double ret = 0, div = 1;
            byte c = read();
            while (c <= ' ') c = read();
            boolean neg = (c == '-');
            if (neg) c = read();
            do {
                ret = ret * 10 + c - '0';
            }
            while ((c = read()) >= '0' && c <= '9');
            if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10);
            if (neg) return -ret;
            return ret;
        }

        private void fillBuffer() throws IOException {
            bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
            if (bytesRead == -1) buffer[0] = -1;
        }

        private byte read() throws IOException {
            if (bufferPointer == bytesRead) fillBuffer();
            return buffer[bufferPointer++];
        }

        public void close() throws IOException {
            if (din == null) return;
            din.close();
        }
    }

    public static void main(String[] args) throws Exception {
        run();
    }

    static int[] readIntArr(int n, AdityaFastIO r) throws IOException {
        int[] arr = new int[n];
        for (int i = 0; i < n; i++) arr[i] = r.ni();
        return arr;
    }

    static long[] readLongArr(int n, AdityaFastIO r) throws IOException {
        long[] arr = new long[n];
        for (int i = 0; i < n; i++) arr[i] = r.nl();
        return arr;
    }

    static List<Integer> readIntList(int n, AdityaFastIO r) throws IOException {
        List<Integer> al = new ArrayList<>();
        for (int i = 0; i < n; i++) al.add(r.ni());
        return al;
    }

    static List<Long> readLongList(int n, AdityaFastIO r) throws IOException {
        List<Long> al = new ArrayList<>();
        for (int i = 0; i < n; i++) al.add(r.nl());
        return al;
    }

    static long mod = 998244353;

    static long modInv(long base, long e) {
        long result = 1;
        base %= mod;
        while (e > 0) {
            if ((e & 1) > 0) result = result * base % mod;
            base = base * base % mod;
            e >>= 1;
        }
        return result;
    }

    static class FastReader {
        BufferedReader br;
        StringTokenizer st;

        public FastReader() {
            br = new BufferedReader(new InputStreamReader(System.in));
        }

        String word() {
            while (st == null || !st.hasMoreElements()) {
                try {
                    st = new StringTokenizer(br.readLine());
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            return st.nextToken();
        }

        String line() {
            String str = "";
            try {
                str = br.readLine();
            } catch (IOException e) {
                e.printStackTrace();
            }
            return str;
        }

        int ni() {
            return Integer.parseInt(word());
        }

        long nl() {
            return Long.parseLong(word());
        }

        double nd() {
            return Double.parseDouble(word());
        }
    }

    static int MOD = (int) (1e9 + 7);

    static long powerLL(long x, long n) {
        long result = 1;
        while (n > 0) {
            if (n % 2 == 1) result = result * x % MOD;
            n = n / 2;
            x = x * x % MOD;
        }
        return result;
    }

    static long powerStrings(int i1, int i2) {
        String sa = String.valueOf(i1);
        String sb = String.valueOf(i2);
        long a = 0, b = 0;
        for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD;
        for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1);
        return powerLL(a, b);
    }

    static long gcd(long a, long b) {
        if (a == 0) return b;
        else return gcd(b % a, a);
    }

    static long lcm(long a, long b) {
        return (a * b) / gcd(a, b);
    }

    static long lower_bound(int[] arr, int x) {
        int l = -1, r = arr.length;
        while (l + 1 < r) {
            int m = (l + r) >>> 1;
            if (arr[m] >= x) r = m;
            else l = m;
        }
        return r;
    }

    static int upper_bound(int[] arr, int x) {
        int l = -1, r = arr.length;
        while (l + 1 < r) {
            int m = (l + r) >>> 1;
            if (arr[m] <= x) l = m;
            else r = m;
        }
        return l + 1;
    }

    static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) {
        graph.get(edge1).add(edge2);
        graph.get(edge2).add(edge1);
    }

    public static class Pair implements Comparable<Pair> {
        int first;
        int second;

        public Pair(int first, int second) {
            this.first = first;
            this.second = second;
        }

        public String toString() {
            return "(" + first + "," + second + ")";
        }

        public int compareTo(Pair o) {
            // TODO Auto-generated method stub
            if (this.first != o.first)
                return (int) (this.first - o.first);
            else return (int) (this.second - o.second);
        }
    }

    public static class PairC<X, Y> implements Comparable<PairC> {
        X first;
        Y second;

        public PairC(X first, Y second) {
            this.first = first;
            this.second = second;
        }

        public String toString() {
            return "(" + first + "," + second + ")";
        }

        public int compareTo(PairC o) {
            // TODO Auto-generated method stub
            return o.compareTo((PairC) first);
        }
    }

    static boolean isCollectionsSorted(List<Long> list) {
        if (list.size() == 0 || list.size() == 1) return true;
        for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false;
        return true;
    }

    static boolean isCollectionsSortedReverseOrder(List<Long> list) {
        if (list.size() == 0 || list.size() == 1) return true;
        for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false;
        return true;
    }

}
                    


                        Solution in Python : 
                            
import math
for _ in range(int(input())):
    b, c = map(int, input().split())
    print(c // math.gcd(b, c))
                    


View More Similar Problems

Components in a graph

There are 2 * N nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N + 1 and , 2 * N inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have or more nodes. A node can have any number of connections. The highest node valu

View Solution →

Kundu and Tree

Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that

View Solution →

Super Maximum Cost Queries

Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and

View Solution →

Contacts

We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co

View Solution →

No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

View Solution →

Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

View Solution →