Stack of Stacks - Amazon Top Interview Questions
Problem Statement :
Implement a data structure with the following methods: StackOfStacks(int capacity) which instantiates an instance that represents an infinite number of stacks, each with size capacity. void push(int val) which pushes the value val to the leftmost stack that's not full. int pop() which pops the value of the top element of the rightmost non-empty stack. If every stack is empty, return -1. int popStack(int idx) which pops the value of the top element of the idx (0-indexed) stack. If the stack at index idx is empty, return -1. Constraints 0 ≤ n ≤ 100,000 where n is the number of calls to push, pop and popStack Example 1 Input methods = ["constructor", "push", "push", "push", "popStack", "pop", "popStack"] arguments = [[2], [1], [2], [3], [0], [], [1]]` Output [None, None, None, None, 2, 3, -1] Explanation s = StackOfStacks(2) s.push(1) s.push(2) s.push(3) s.popStack(0) == 2 s.pop() == 3 s.popStack(1) == -1
Solution :
Solution in C++ :
class StackOfStacks {
int cap;
vector<stack<int>> stacks;
set<int> avails, idxes;
public:
StackOfStacks(int capacity) : cap(capacity) {
}
void push(int val) {
if (cap < 1) return;
if (avails.empty()) {
stacks.emplace_back();
stacks.back().push(val);
// cout << "push " << val << " to " << stacks.size() - 1 << endl;
if (cap > 1 && stacks.back().size() == 1) avails.insert(stacks.size() - 1);
idxes.insert(stacks.size() - 1);
} else {
auto it = avails.begin();
stacks[*it].push(val);
// cout << "push " << val << " to " << *it << endl;
if (stacks[*it].size() == 1) idxes.insert(*it);
if (stacks[*it].size() >= cap) avails.erase(it);
}
}
int pop() {
if (idxes.empty()) return -1;
auto it = idxes.end();
--it;
int ret = stacks[*it].top();
stacks[*it].pop();
if (stacks[*it].size() == cap - 1) avails.insert(*it);
if (stacks[*it].empty()) idxes.erase(it);
return ret;
}
int popStack(int idx) {
if (idx >= stacks.size() || stacks[idx].empty()) return -1;
int ret = stacks[idx].top();
stacks[idx].pop();
if (stacks[idx].size() == 0) idxes.erase(idx);
if (stacks[idx].size() == cap - 1) avails.insert(idx);
return ret;
}
};
Solution in Java :
import java.util.*;
class StackOfStacks {
private final TreeSet<Integer> avails = new TreeSet<>();
private final TreeSet<Integer> occups = new TreeSet<>();
private final List<Stack<Integer>> stacks = new ArrayList<>();
private final int N;
public StackOfStacks(int capacity) {
N = capacity;
}
public void push(int val) {
int idx = -1;
Stack<Integer> stack = null;
if (avails.isEmpty()) {
idx = stacks.size();
stacks.add(stack = new Stack<>());
avails.add(idx);
occups.add(idx);
} else {
idx = avails.first().intValue();
stack = stacks.get(idx);
}
stack.push(val);
if (stack.size() == N)
avails.remove(idx);
if (stack.size() == 1)
occups.add(idx);
}
public int pop() {
if (occups.isEmpty())
return -1;
final int idx = occups.last().intValue();
Stack<Integer> stack = stacks.get(idx);
final int res = stack.pop();
if (stack.size() + 1 == N)
avails.add(idx);
if (stack.size() == 0)
occups.remove(idx);
return res;
}
public int popStack(int idx) {
if (idx >= stacks.size())
return -1;
Stack<Integer> stack = stacks.get(idx);
if (stack.isEmpty())
return -1;
final int res = stack.pop();
if (stack.size() + 1 == N)
avails.add(idx);
if (stack.size() == 0)
occups.remove(idx);
return res;
}
}
Solution in Python :
class StackOfStacks:
def __init__(self, cap):
self.cap = cap
self.s = defaultdict(list)
self.c = Counter() # size of stack at idx
self.sl = []
self.ne = SortedList()
heapify(self.sl)
self.full = set()
self.stack_cnt = 0
def push(self, val):
if len(self.sl) == 0:
heappush(self.sl, self.stack_cnt)
self.stack_cnt += 1
idx = heappop(self.sl)
self.c[idx] += 1
self.s[idx].append(val)
if self.c[idx] == self.cap:
self.full.add(idx)
else:
heappush(self.sl, idx)
if self.c[idx] == 1:
self.ne.add(idx)
def pop(self):
if len(self.ne) == 0:
return -1
idx = self.ne[-1]
ret = self.s[idx].pop()
self.c[idx] -= 1
if self.c[idx] == 0:
self.ne.pop()
if self.c[idx] == self.cap - 1:
self.full.remove(idx)
heappush(self.sl, idx)
return ret
def popStack(self, idx):
if self.c[idx] == 0:
return -1
self.c[idx] -= 1
ret = self.s[idx].pop()
if self.c[idx] == self.cap - 1:
self.full.remove(idx)
heappush(self.sl, idx)
if self.c[idx] == 0:
self.ne.remove(idx)
return ret
View More Similar Problems
Waiter
You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the
View Solution →Queue using Two Stacks
A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que
View Solution →Castle on the Grid
You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):
View Solution →Down to Zero II
You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.
View Solution →Truck Tour
Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr
View Solution →Queries with Fixed Length
Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon
View Solution →