Rolling Median - Amazon Top Interview Questions


Problem Statement :


Implement a RollingMedian class with the following methods:

add(int val) which adds val to the data structure
median() which retrieves the current median of all numbers added
Median of [1, 2, 3] is 2 whereas median of [1, 2, 3, 4] is 2.5.

Constraints

n ≤ 100,000 where n is the number of calls to add and median

Example 1

Input

methods = ["constructor", "add", "add", "add", "median", "add", "median"]

arguments = [[], [1], [2], [3], [], [4], []]`

Output

[None, None, None, None, 2, None, 2.5]

Explanation

We first add 1, 2, and 3. The median is then 2. Then we add 4. Median is now (2 + 3) / 2 = 2.5



Solution :



title-img




                        Solution in C++ :

class RollingMedian {
    public:
    multiset<int> order;
    multiset<int>::iterator it;
    RollingMedian() {
    }

    void add(int val) {
        order.insert(val);
        if (order.size() == 1) {
            it = order.begin();
        } else {
            if (val < *it and order.size() % 2 == 0) {
                --it;
            }
            if (val >= *it and order.size() % 2 != 0) {
                ++it;
            }
        }
    }

    double median() {
        if (order.size() % 2 != 0) {
            return double(*it);
        } else {
            auto one = *it, two = *next(it);
            return double(one + two) / 2.0;
        }
    }
};
                    


                        Solution in Java :

import java.util.*;

class RollingMedian {
    PriorityQueue<Integer> small, great;

    public RollingMedian() {
        this.small = new PriorityQueue<Integer>(Collections.reverseOrder());
        this.great = new PriorityQueue<Integer>();
    }

    public void add(int val) {
        if (this.small.size() == 0 && this.great.size() == 0) {
            this.small.add(val);
        } else if (this.small.size() > this.great.size()) {
            if (this.small.peek() > val) {
                this.great.add(this.small.poll());
                this.small.add(val);
            } else {
                this.great.add(val);
            }

        } else {
            if (this.small.peek() >= val) {
                this.small.add(val);
            } else {
                this.great.add(val);
                this.small.add(this.great.remove());
            }
        }
    }

    public double median() {
        if (this.small.size() > this.great.size()) {
            return this.small.peek();
        } else {
            return (double) (this.small.peek() + this.great.peek()) / 2;
        }
    }
}
                    


                        Solution in Python : 
                            
class RollingMedian:
    def __init__(self):
        self.l = SortedList()

    def add(self, val):
        self.l.add(val)

    def median(self):
        if len(self.l) % 2 == 0:

            return (self.l[len(self.l) // 2] + self.l[(len(self.l) // 2) - 1]) / 2
        else:
            return self.l[len(self.l) // 2]
                    


View More Similar Problems

Array-DS

An array is a type of data structure that stores elements of the same type in a contiguous block of memory. In an array, A, of size N, each memory location has some unique index, i (where 0<=i<N), that can be referenced as A[i] or Ai. Reverse an array of integers. Note: If you've already solved our C++ domain's Arrays Introduction challenge, you may want to skip this. Example: A=[1,2,3

View Solution →

2D Array-DS

Given a 6*6 2D Array, arr: 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 An hourglass in A is a subset of values with indices falling in this pattern in arr's graphical representation: a b c d e f g There are 16 hourglasses in arr. An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in arr, then print t

View Solution →

Dynamic Array

Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.

View Solution →

Left Rotation

A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d

View Solution →

Sparse Arrays

There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun

View Solution →

Array Manipulation

Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu

View Solution →