Rolling Median - Amazon Top Interview Questions
Problem Statement :
Implement a RollingMedian class with the following methods: add(int val) which adds val to the data structure median() which retrieves the current median of all numbers added Median of [1, 2, 3] is 2 whereas median of [1, 2, 3, 4] is 2.5. Constraints n ≤ 100,000 where n is the number of calls to add and median Example 1 Input methods = ["constructor", "add", "add", "add", "median", "add", "median"] arguments = [[], [1], [2], [3], [], [4], []]` Output [None, None, None, None, 2, None, 2.5] Explanation We first add 1, 2, and 3. The median is then 2. Then we add 4. Median is now (2 + 3) / 2 = 2.5
Solution :
Solution in C++ :
class RollingMedian {
public:
multiset<int> order;
multiset<int>::iterator it;
RollingMedian() {
}
void add(int val) {
order.insert(val);
if (order.size() == 1) {
it = order.begin();
} else {
if (val < *it and order.size() % 2 == 0) {
--it;
}
if (val >= *it and order.size() % 2 != 0) {
++it;
}
}
}
double median() {
if (order.size() % 2 != 0) {
return double(*it);
} else {
auto one = *it, two = *next(it);
return double(one + two) / 2.0;
}
}
};
Solution in Java :
import java.util.*;
class RollingMedian {
PriorityQueue<Integer> small, great;
public RollingMedian() {
this.small = new PriorityQueue<Integer>(Collections.reverseOrder());
this.great = new PriorityQueue<Integer>();
}
public void add(int val) {
if (this.small.size() == 0 && this.great.size() == 0) {
this.small.add(val);
} else if (this.small.size() > this.great.size()) {
if (this.small.peek() > val) {
this.great.add(this.small.poll());
this.small.add(val);
} else {
this.great.add(val);
}
} else {
if (this.small.peek() >= val) {
this.small.add(val);
} else {
this.great.add(val);
this.small.add(this.great.remove());
}
}
}
public double median() {
if (this.small.size() > this.great.size()) {
return this.small.peek();
} else {
return (double) (this.small.peek() + this.great.peek()) / 2;
}
}
}
Solution in Python :
class RollingMedian:
def __init__(self):
self.l = SortedList()
def add(self, val):
self.l.add(val)
def median(self):
if len(self.l) % 2 == 0:
return (self.l[len(self.l) // 2] + self.l[(len(self.l) // 2) - 1]) / 2
else:
return self.l[len(self.l) // 2]
View More Similar Problems
Array-DS
An array is a type of data structure that stores elements of the same type in a contiguous block of memory. In an array, A, of size N, each memory location has some unique index, i (where 0<=i<N), that can be referenced as A[i] or Ai. Reverse an array of integers. Note: If you've already solved our C++ domain's Arrays Introduction challenge, you may want to skip this. Example: A=[1,2,3
View Solution →2D Array-DS
Given a 6*6 2D Array, arr: 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 An hourglass in A is a subset of values with indices falling in this pattern in arr's graphical representation: a b c d e f g There are 16 hourglasses in arr. An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in arr, then print t
View Solution →Dynamic Array
Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.
View Solution →Left Rotation
A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d
View Solution →Sparse Arrays
There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun
View Solution →Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →