# Reverse Shuffle Merge

### Problem Statement :

```Given a string, A, we define some operations on the string as follows:

a.  denotes the string obtained by reversing string . Example:

b.  denotes any string that's a permutation of string . Example:

c.  denotes any string that's obtained by interspersing the two strings  & , maintaining the order of characters in both. For example,  & , one possible result of  could be , another could be , another could be  and so on.

Given a string  such that  for some string , find the lexicographically smallest .

For example, s = abab. We can split it into two strings of ab. The reverse is ba  and we need to find a string to shuffle in to get abab . The middle two characters match our reverse string, leaving the a and  b at the ends. Our shuffle string needs to be ab . Lexicographically ab < ba , so our answer is ab.

Function Description

Complete the reverseShuffleMerge function in the editor below. It must return the lexicographically smallest string fitting the criteria.

reverseShuffleMerge has the following parameter(s):

s: a string
Input Format

A single line containing the string s.

Constraints

s contains only lower-case English letters, ascii[a-z]
1  <=  | s |  <=  10000

Output Format

Find and return the string which is the lexicographically smallest valid A.```

### Solution :

```                            ```Solution in C :

In  C :

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int main() {

char s[10000],c[5000];
int a[26],b[26],i=0,len,pos,limit,j,index;
scanf("%s",s);
len=strlen(s);
pos=len-1;
limit=len>>1;
while(s[i])
a[s[i++]-97]++;
for(i=0;i<26;i++)
b[i]=a[i]/2;
for(i=0;i<limit;i++)
{
char best;
int x=0;
for(j=pos;j>=0;j--)
{
if((!x||s[j]<best)&&b[s[j]-97])
{
x=1;
best=s[j];
index=j;
}
a[s[j]-97]--;
if(a[s[j]-97]<b[s[j]-97])
break;
}
for(; j < index; ++j)
{
++a[s[j]-97];
}
c[i]=best;
b[best-97]--;
pos=index-1;
}
printf("%s",c);
return 0;
}```
```

```                        ```Solution in C++ :

In  C ++  :

#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace std;

const int MAXN = 10000;
int cnt[26][MAXN+1];
int nxt[MAXN][26];
int shuffcnt[26];
int Acnt[26];
int totals[26];
int main() {
string S;
cin >> S;
int n = S.size();
assert(n%2 == 0);
reverse(S.begin(), S.end());
for (int i=0; i<n; ++i) {
for (int j=0; j<26; ++j) {
cnt[j][i+1] = cnt[j][i];
}
++cnt[S[i]-'a'][i+1];
}
for (int j=0; j<26; ++j) {
nxt[n-1][j] = -1;
}
nxt[n-1][S[n-1]-'a'] = n-1;
for (int i=n-2; i>=0; --i) {
for (int j=0; j<26; ++j) {
nxt[i][j] = nxt[i+1][j];
}
nxt[i][S[i]-'a'] = i;
}

for (int c=0; c<26; ++c) {
assert(cnt[c][n]%2 == 0);
totals[c] = cnt[c][n]/2;
}

string sol;
int start = 0;
while ((int)sol.size() < n/2) {
assert(start < n);
for (int c=0; c<26; ++c) {
if (Acnt[c] == totals[c]) continue;
int p = nxt[start][c];
if (p == -1) continue;
bool ok = true;
for (int j=0; j<26; ++j) {
if (shuffcnt[j]+(cnt[j][p]-cnt[j][start]) > totals[j]) {
ok = false;
break;
}
}
if (ok) {
sol += char(c + 'a');
for (int j=0; j<26; ++j) {
shuffcnt[j] += cnt[j][p] - cnt[j][start];
}
++Acnt[c];
start = p + 1;
break;
}
}
}
assert(int(sol.size()) == n/2);
cout << sol << '\n';
vector<int> tst(26);
for (int i=0; i<(int)sol.size(); ++i) {
++tst[sol[i]-'a'];
}
for (int j=0; j<26; ++j) {
assert(tst[j] == totals[j]);
}
return 0;
}```
```

```                        ```Solution in Java :

In   Java :

import java.io.*;
import java.util.*;
import java.math.*;

public class Solution implements Runnable {
static PrintWriter out;
static StringTokenizer st;
static Random rnd;

private void solve() throws IOException {
int tests = 1;
for (int test = 0; test < tests; test++)
solveOne();
}

private void solveOne() throws IOException {
String s = nextToken();
s = reverseString(s);
final int alphaSize = 26;
int[] count = new int[alphaSize];
for (int i = 0; i < s.length(); i++)
++count[s.charAt(i) - 'a'];
int needLength = 0;
for (int i = 0; i < alphaSize; i++) {
if (count[i] % 2 != 0)
throw new AssertionError();
count[i] /= 2;
needLength += count[i];
}
StringBuilder result = new StringBuilder();
int[][] counts = new int[s.length()][alphaSize];
for (int i = s.length() - 1; i >= 0; i--) {
for (int j = 0; j < alphaSize; j++)
counts[i][j] = (i + 1 == s.length() ? 0 : counts[i + 1][j]);
counts[i][s.charAt(i) - 'a']++;
}
int leftPointer = 0;
for (int it = 0; it < needLength; it++) {
int resultIndex = -1;
for (int i = leftPointer; i < s.length(); i++) {
// out.println(it + " " + i + " " + resultIndex);
if (count[s.charAt(i) - 'a'] > 0) {
if (resultIndex == -1
|| s.charAt(i) < s.charAt(resultIndex)) {
if (isOk(count, counts[i]))
resultIndex = i;
}
}
}
result.append(s.charAt(resultIndex));
--count[s.charAt(resultIndex) - 'a'];
leftPointer = resultIndex + 1;
// out.println(resultIndex + " " + result);
// out.flush();
}
out.println(result);
}

private boolean isOk(int[] a, int[] b) {
for (int i = 0; i < a.length; i++)
if (a[i] > b[i])
return false;

return true;
}

private String reverseString(String s) {
return new StringBuilder(s).reverse().toString();
}

public static void main(String[] args) {
new Solution().run();
}

public void run() {
try {
out = new PrintWriter(System.out);

rnd = new Random();

solve();

out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}

private String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {

if (line == null)
return null;

st = new StringTokenizer(line);
}

return st.nextToken();
}

private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}

private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}

private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}```
```

```                        ```Solution in Python :

In Python3 :

from collections import defaultdict
S = input()
S = S[::-1]
count = defaultdict(int)
for c in S:
count[c] += 1
need = {}
for c in count:
need[c] = count[c] / 2
solution = []
i = 0
while len(solution) < len(S) / 2:
min_char_at = -1
while True:
c = S[i]
if need[c] > 0 and (min_char_at < 0 or c < S[min_char_at]):
min_char_at = i
count[c] -= 1
if count[c] < need[c]:
break
i += 1
for j in range(min_char_at+1, i+1):
count[S[j]] += 1
need[S[min_char_at]] -= 1
solution.append(S[min_char_at])
i = min_char_at + 1
print(''.join(solution))```
```

## View More Similar Problems

You’re given the pointer to the head nodes of two linked lists. Compare the data in the nodes of the linked lists to check if they are equal. If all data attributes are equal and the lists are the same length, return 1. Otherwise, return 0. Example: list1=1->2->3->Null list2=1->2->3->4->Null The two lists have equal data attributes for the first 3 nodes. list2 is longer, though, so the lis

## Merge two sorted linked lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description C

## Get Node Value

This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t

## Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -

## Cycle Detection

A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer

## Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share