Reverse Shuffle Merge


Problem Statement :


Given a string, A, we define some operations on the string as follows:

a.  denotes the string obtained by reversing string . Example: 


b.  denotes any string that's a permutation of string . Example: 


c.  denotes any string that's obtained by interspersing the two strings  & , maintaining the order of characters in both. For example,  & , one possible result of  could be , another could be , another could be  and so on.

Given a string  such that  for some string , find the lexicographically smallest .

For example, s = abab. We can split it into two strings of ab. The reverse is ba  and we need to find a string to shuffle in to get abab . The middle two characters match our reverse string, leaving the a and  b at the ends. Our shuffle string needs to be ab . Lexicographically ab < ba , so our answer is ab.

Function Description

Complete the reverseShuffleMerge function in the editor below. It must return the lexicographically smallest string fitting the criteria.

reverseShuffleMerge has the following parameter(s):

s: a string
Input Format

A single line containing the string s.


Constraints

s contains only lower-case English letters, ascii[a-z]
1  <=  | s |  <=  10000


Output Format

Find and return the string which is the lexicographically smallest valid A.



Solution :



title-img


                            Solution in C :

In  C :




#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int main() {

    char s[10000],c[5000];
    int a[26],b[26],i=0,len,pos,limit,j,index;
    scanf("%s",s);
    len=strlen(s);
    pos=len-1;
    limit=len>>1;
    while(s[i])
        	a[s[i++]-97]++;
    for(i=0;i<26;i++)
        	b[i]=a[i]/2;
    for(i=0;i<limit;i++)
        {
        char best;
        int x=0;
        for(j=pos;j>=0;j--)
            {
            if((!x||s[j]<best)&&b[s[j]-97])
                {
                x=1;
                best=s[j];
                index=j;    
            }
            a[s[j]-97]--;
            if(a[s[j]-97]<b[s[j]-97])
                break;
        }
        for(; j < index; ++j)
        {
            ++a[s[j]-97];
        }
        c[i]=best;
        b[best-97]--;
        pos=index-1;
    }
    printf("%s",c);
    return 0;
}
                        


                        Solution in C++ :

In  C ++  :




#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace std;

const int MAXN = 10000;
int cnt[26][MAXN+1];
int nxt[MAXN][26];
int shuffcnt[26];
int Acnt[26];
int totals[26];
int main() {
    string S;
    cin >> S;
    int n = S.size();
    assert(n%2 == 0);
    reverse(S.begin(), S.end());
    for (int i=0; i<n; ++i) {
        for (int j=0; j<26; ++j) {
            cnt[j][i+1] = cnt[j][i];
        }
        ++cnt[S[i]-'a'][i+1];
    }
    for (int j=0; j<26; ++j) {
        nxt[n-1][j] = -1;
    }
    nxt[n-1][S[n-1]-'a'] = n-1;
    for (int i=n-2; i>=0; --i) {
        for (int j=0; j<26; ++j) {
            nxt[i][j] = nxt[i+1][j];
        }
        nxt[i][S[i]-'a'] = i;
    }

    for (int c=0; c<26; ++c) {
        assert(cnt[c][n]%2 == 0);
        totals[c] = cnt[c][n]/2;
    }

    string sol;
    int start = 0;
    while ((int)sol.size() < n/2) {
        assert(start < n);
        for (int c=0; c<26; ++c) {
            if (Acnt[c] == totals[c]) continue;
            int p = nxt[start][c];
            if (p == -1) continue;
            bool ok = true;
            for (int j=0; j<26; ++j) {
                if (shuffcnt[j]+(cnt[j][p]-cnt[j][start]) > totals[j]) {
                    ok = false;
                    break;
                }
            }
            if (ok) {
                sol += char(c + 'a');
                for (int j=0; j<26; ++j) {
                    shuffcnt[j] += cnt[j][p] - cnt[j][start];   
                }
                ++Acnt[c];
                start = p + 1;
                break;
            }
        }
    }
    assert(int(sol.size()) == n/2);
    cout << sol << '\n';
    vector<int> tst(26);
    for (int i=0; i<(int)sol.size(); ++i) {
        ++tst[sol[i]-'a'];
    }
    for (int j=0; j<26; ++j) {
        assert(tst[j] == totals[j]);
    }
    return 0;
}
                    


                        Solution in Java :

In   Java :





import java.io.*;
import java.util.*;
import java.math.*;

public class Solution implements Runnable {
	static BufferedReader in;
	static PrintWriter out;
	static StringTokenizer st;
	static Random rnd;

	private void solve() throws IOException {
		int tests = 1;
		for (int test = 0; test < tests; test++)
			solveOne();
	}

	private void solveOne() throws IOException {
		String s = nextToken();
		s = reverseString(s);
		final int alphaSize = 26;
		int[] count = new int[alphaSize];
		for (int i = 0; i < s.length(); i++)
			++count[s.charAt(i) - 'a'];
		int needLength = 0;
		for (int i = 0; i < alphaSize; i++) {
			if (count[i] % 2 != 0)
				throw new AssertionError();
			count[i] /= 2;
			needLength += count[i];
		}
		StringBuilder result = new StringBuilder();
		int[][] counts = new int[s.length()][alphaSize];
		for (int i = s.length() - 1; i >= 0; i--) {
			for (int j = 0; j < alphaSize; j++)
				counts[i][j] = (i + 1 == s.length() ? 0 : counts[i + 1][j]);
			counts[i][s.charAt(i) - 'a']++;
		}
		int leftPointer = 0;
		for (int it = 0; it < needLength; it++) {
			int resultIndex = -1;
			for (int i = leftPointer; i < s.length(); i++) {
				// out.println(it + " " + i + " " + resultIndex);
				if (count[s.charAt(i) - 'a'] > 0) {
					if (resultIndex == -1
							|| s.charAt(i) < s.charAt(resultIndex)) {
						if (isOk(count, counts[i]))
							resultIndex = i;
					}
				}
			}
			result.append(s.charAt(resultIndex));
			--count[s.charAt(resultIndex) - 'a'];
			leftPointer = resultIndex + 1;
			// out.println(resultIndex + " " + result);
			// out.flush();
		}
		out.println(result);
	}

	private boolean isOk(int[] a, int[] b) {
		for (int i = 0; i < a.length; i++)
			if (a[i] > b[i])
				return false;

		return true;
	}

	private String reverseString(String s) {
		return new StringBuilder(s).reverse().toString();
	}

	public static void main(String[] args) {
		new Solution().run();
	}

	public void run() {
		try {
			in = new BufferedReader(new InputStreamReader(System.in));
			out = new PrintWriter(System.out);

			rnd = new Random();

			solve();

			out.close();
		} catch (IOException e) {
			e.printStackTrace();
			System.exit(1);
		}
	}

	private String nextToken() throws IOException {
		while (st == null || !st.hasMoreTokens()) {
			String line = in.readLine();

			if (line == null)
				return null;

			st = new StringTokenizer(line);
		}

		return st.nextToken();
	}

	private int nextInt() throws IOException {
		return Integer.parseInt(nextToken());
	}

	private long nextLong() throws IOException {
		return Long.parseLong(nextToken());
	}

	private double nextDouble() throws IOException {
		return Double.parseDouble(nextToken());
	}
}
                    


                        Solution in Python : 
                            
In Python3 :





from collections import defaultdict
S = input()
S = S[::-1]
count = defaultdict(int)
for c in S:
    count[c] += 1
need = {}
for c in count:
    need[c] = count[c] / 2
solution = []
i = 0
while len(solution) < len(S) / 2:
    min_char_at = -1
    while True:
        c = S[i]
        if need[c] > 0 and (min_char_at < 0 or c < S[min_char_at]):
            min_char_at = i
        count[c] -= 1
        if count[c] < need[c]:
            break
        i += 1
    for j in range(min_char_at+1, i+1):
        count[S[j]] += 1
    need[S[min_char_at]] -= 1
    solution.append(S[min_char_at])
    i = min_char_at + 1
print(''.join(solution))
                    


View More Similar Problems

AND xor OR

Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value

View Solution →

Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the

View Solution →

Queue using Two Stacks

A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que

View Solution →

Castle on the Grid

You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):

View Solution →

Down to Zero II

You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.

View Solution →

Truck Tour

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr

View Solution →