Reverse Shuffle Merge
Problem Statement :
Given a string, A, we define some operations on the string as follows: a. denotes the string obtained by reversing string . Example: b. denotes any string that's a permutation of string . Example: c. denotes any string that's obtained by interspersing the two strings & , maintaining the order of characters in both. For example, & , one possible result of could be , another could be , another could be and so on. Given a string such that for some string , find the lexicographically smallest . For example, s = abab. We can split it into two strings of ab. The reverse is ba and we need to find a string to shuffle in to get abab . The middle two characters match our reverse string, leaving the a and b at the ends. Our shuffle string needs to be ab . Lexicographically ab < ba , so our answer is ab. Function Description Complete the reverseShuffleMerge function in the editor below. It must return the lexicographically smallest string fitting the criteria. reverseShuffleMerge has the following parameter(s): s: a string Input Format A single line containing the string s. Constraints s contains only lower-case English letters, ascii[a-z] 1 <= | s | <= 10000 Output Format Find and return the string which is the lexicographically smallest valid A.
Solution :
Solution in C :
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
int main() {
char s[10000],c[5000];
int a[26],b[26],i=0,len,pos,limit,j,index;
scanf("%s",s);
len=strlen(s);
pos=len-1;
limit=len>>1;
while(s[i])
a[s[i++]-97]++;
for(i=0;i<26;i++)
b[i]=a[i]/2;
for(i=0;i<limit;i++)
{
char best;
int x=0;
for(j=pos;j>=0;j--)
{
if((!x||s[j]<best)&&b[s[j]-97])
{
x=1;
best=s[j];
index=j;
}
a[s[j]-97]--;
if(a[s[j]-97]<b[s[j]-97])
break;
}
for(; j < index; ++j)
{
++a[s[j]-97];
}
c[i]=best;
b[best-97]--;
pos=index-1;
}
printf("%s",c);
return 0;
}
Solution in C++ :
In C ++ :
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace std;
const int MAXN = 10000;
int cnt[26][MAXN+1];
int nxt[MAXN][26];
int shuffcnt[26];
int Acnt[26];
int totals[26];
int main() {
string S;
cin >> S;
int n = S.size();
assert(n%2 == 0);
reverse(S.begin(), S.end());
for (int i=0; i<n; ++i) {
for (int j=0; j<26; ++j) {
cnt[j][i+1] = cnt[j][i];
}
++cnt[S[i]-'a'][i+1];
}
for (int j=0; j<26; ++j) {
nxt[n-1][j] = -1;
}
nxt[n-1][S[n-1]-'a'] = n-1;
for (int i=n-2; i>=0; --i) {
for (int j=0; j<26; ++j) {
nxt[i][j] = nxt[i+1][j];
}
nxt[i][S[i]-'a'] = i;
}
for (int c=0; c<26; ++c) {
assert(cnt[c][n]%2 == 0);
totals[c] = cnt[c][n]/2;
}
string sol;
int start = 0;
while ((int)sol.size() < n/2) {
assert(start < n);
for (int c=0; c<26; ++c) {
if (Acnt[c] == totals[c]) continue;
int p = nxt[start][c];
if (p == -1) continue;
bool ok = true;
for (int j=0; j<26; ++j) {
if (shuffcnt[j]+(cnt[j][p]-cnt[j][start]) > totals[j]) {
ok = false;
break;
}
}
if (ok) {
sol += char(c + 'a');
for (int j=0; j<26; ++j) {
shuffcnt[j] += cnt[j][p] - cnt[j][start];
}
++Acnt[c];
start = p + 1;
break;
}
}
}
assert(int(sol.size()) == n/2);
cout << sol << '\n';
vector<int> tst(26);
for (int i=0; i<(int)sol.size(); ++i) {
++tst[sol[i]-'a'];
}
for (int j=0; j<26; ++j) {
assert(tst[j] == totals[j]);
}
return 0;
}
Solution in Java :
In Java :
import java.io.*;
import java.util.*;
import java.math.*;
public class Solution implements Runnable {
static BufferedReader in;
static PrintWriter out;
static StringTokenizer st;
static Random rnd;
private void solve() throws IOException {
int tests = 1;
for (int test = 0; test < tests; test++)
solveOne();
}
private void solveOne() throws IOException {
String s = nextToken();
s = reverseString(s);
final int alphaSize = 26;
int[] count = new int[alphaSize];
for (int i = 0; i < s.length(); i++)
++count[s.charAt(i) - 'a'];
int needLength = 0;
for (int i = 0; i < alphaSize; i++) {
if (count[i] % 2 != 0)
throw new AssertionError();
count[i] /= 2;
needLength += count[i];
}
StringBuilder result = new StringBuilder();
int[][] counts = new int[s.length()][alphaSize];
for (int i = s.length() - 1; i >= 0; i--) {
for (int j = 0; j < alphaSize; j++)
counts[i][j] = (i + 1 == s.length() ? 0 : counts[i + 1][j]);
counts[i][s.charAt(i) - 'a']++;
}
int leftPointer = 0;
for (int it = 0; it < needLength; it++) {
int resultIndex = -1;
for (int i = leftPointer; i < s.length(); i++) {
// out.println(it + " " + i + " " + resultIndex);
if (count[s.charAt(i) - 'a'] > 0) {
if (resultIndex == -1
|| s.charAt(i) < s.charAt(resultIndex)) {
if (isOk(count, counts[i]))
resultIndex = i;
}
}
}
result.append(s.charAt(resultIndex));
--count[s.charAt(resultIndex) - 'a'];
leftPointer = resultIndex + 1;
// out.println(resultIndex + " " + result);
// out.flush();
}
out.println(result);
}
private boolean isOk(int[] a, int[] b) {
for (int i = 0; i < a.length; i++)
if (a[i] > b[i])
return false;
return true;
}
private String reverseString(String s) {
return new StringBuilder(s).reverse().toString();
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}
private String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
Solution in Python :
In Python3 :
from collections import defaultdict
S = input()
S = S[::-1]
count = defaultdict(int)
for c in S:
count[c] += 1
need = {}
for c in count:
need[c] = count[c] / 2
solution = []
i = 0
while len(solution) < len(S) / 2:
min_char_at = -1
while True:
c = S[i]
if need[c] > 0 and (min_char_at < 0 or c < S[min_char_at]):
min_char_at = i
count[c] -= 1
if count[c] < need[c]:
break
i += 1
for j in range(min_char_at+1, i+1):
count[S[j]] += 1
need[S[min_char_at]] -= 1
solution.append(S[min_char_at])
i = min_char_at + 1
print(''.join(solution))
View More Similar Problems
Components in a graph
There are 2 * N nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N + 1 and , 2 * N inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have or more nodes. A node can have any number of connections. The highest node valu
View Solution →Kundu and Tree
Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that
View Solution →Super Maximum Cost Queries
Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and
View Solution →Contacts
We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co
View Solution →No Prefix Set
There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio
View Solution →Cube Summation
You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor
View Solution →