Contacts
Problem Statement :
We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the count on a new line. Given n sequential add and find operations, perform each operation in order. Input Format The first line contains a single integer, n , denoting the number of operations to perform. Each line i of the n subsequent lines contains an operation in one of the two forms defined above. Constraints 1 <= n <= 10 ^5 1 <= | name | <= 21 1 <= | partial | <= 21 It is guaranteed that name and partial contain lowercase English letters only. The input doesn't have any duplicate name for the add operation. Output Format For each find partial operation, print the number of contact names starting with partial on a new line. Sample Input 4 add hack add hackerrank find hac find hak Sample Output 2 0
Solution :
Solution in C :
In C ++ :
#include <bits/stdc++.h>
using namespace std;
struct node{
int h[26],n,f;
};
node null;
vector<node>trie;
void add(string &A){
int i,j,p,q,act=0;
for(i=0;i<A.size();i++){
p=A[i]-'a';
if(!trie[act].h[p]){
trie[act].h[p]=trie.size();
trie.push_back(null);
}
act=trie[act].h[p];
trie[act].n++;
}
}
int findi(string &A){
int i,j,p,q,act=0;
for(i=0;i<A.size();i++){
p=A[i]-'a';
if(!trie[act].h[p])return 0;
act=trie[act].h[p];
}
return trie[act].n;
}
int main(){
int i,j,p,q,N;
string A,B;
null.n=null.f=0;
for(i=0;i<26;i++)null.h[i]=0;
trie.push_back(null);
cin>>N;
for(i=0;i<N;i++){
cin>>A>>B;
if(A=="add")add(B);
else cout<<findi(B)<<"\n";
}
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
class TrieNode{
int count = 0;
TrieNode[] trieNode = new TrieNode[26];
}
class Trie{
TrieNode contacts = new TrieNode();
public void add(String contact){
TrieNode temp = contacts;
temp.count++;
for(char c : contact.toCharArray()){
int index = c - 'a';
if(temp.trieNode[index] != null){
temp = temp.trieNode[index];
}
else{
temp.trieNode[index] = new TrieNode();
temp = temp.trieNode[index];
}
temp.count++;
}
}
public int find(String contact){
TrieNode temp = contacts;
for(char c : contact.toCharArray()){
int index = c -'a';
if(temp.trieNode[index]!=null){
temp = temp.trieNode[index];
}
else{
return 0;
}
}
return temp.count;
}
}
public class Solution {
public static void main(String[] args) {
/* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
int numContacts;
Scanner in = new Scanner(System.in);
int numOperations = in.nextInt();
Trie trie = new Trie();
for(int i = 0; i <= numOperations; i++){
String op = in.nextLine();
String spl[] = op.split(" ");
//System.out.println("Input:"+op);
if(spl[0].equals("add")){
//System.out.println("Adding"+spl[1]);
trie.add(spl[1]);
}
if(spl[0].equals("find")){
//System.out.println("finding"+spl[1]);
numContacts = trie.find(spl[1]);
System.out.println(numContacts);
}
}
}
}
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>
typedef struct node
{
bool isEOW;
int count;
struct node *letters[26];
} Trie;
Trie *createNode()
{
int i;
Trie *temp=malloc(sizeof(Trie));
temp->isEOW=false;
temp->count=0;
for(i=0; i<26; i++)
{
temp->letters[i]=NULL;
}
return temp;
}
Trie *insert(Trie *root,char *name)
{
int i;
Trie *temp=root;
for(i=0; name[i]!='\0'; i++)
{
if(root->letters[name[i]-'a']==NULL)
root->letters[name[i]-'a']=createNode();
root=root->letters[name[i]-'a'];
root->count++;
}
root->isEOW=true;
return temp;
}
/*int countNames(Trie *root)
{
int i,count=0;
if(root->isEOW)
count++;
for(i=0; i<26; i++)
{
if(root->letters[i])
count=count+countNames(root->letters[i]);
}
return count;
}*/
int main()
{
int i;
long n;
Trie* root=createNode();
scanf("%ld",&n);
char a[5],name[22];
while(n--)
{
scanf("%s",a);
scanf(" %s",name);
if(strcmp(a,"add")==0)
root= insert(root,name);
else if(strcmp(a,"find")==0)
{
Trie *temp=root;
for(i=0; i<strlen(name); i++)
{
temp=temp->letters[name[i]-'a'];
if(!temp)
{
printf("0\n");
break;
}
}
if(i==strlen(name))
printf("%d\n",temp->count);
}
}
return 0;
}
In Python3 :
N = int(input())
trie = {}
def add_word(trie, word):
# Base case
if word == "": return
# TODO: default dict
if word[0] in trie:
trie[word[0]]['count'] += 1
else:
trie[word[0]] = { 'count': 1 }
add_word(trie[word[0]], word[1:])
def find_word(trie, word):
if word[0] not in trie:
return 0
else:
# Base case
if len(word) == 1:
return trie[word[0]]['count']
else:
return find_word(trie[word[0]], word[1:])
for i in range(N):
line = input()
command, word = line.split()
if command == "add":
add_word(trie, word)
elif command == "find":
print(find_word(trie, word))
else:
print("WTF")
View More Similar Problems
Super Maximum Cost Queries
Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and
View Solution →Contacts
We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co
View Solution →No Prefix Set
There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio
View Solution →Cube Summation
You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor
View Solution →Direct Connections
Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do
View Solution →Subsequence Weighting
A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =
View Solution →