# Kundu and Tree

### Problem Statement :

```Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that (a,b,c), (b,a,c) and all such permutations will be considered as the same triplet.

If the answer is greater than 109 + 7, print the answer modulo (%) 109 + 7.

Input Format
The first line contains an integer N, i.e., the number of vertices in tree.
The next N-1 lines represent edges: 2 space separated integers denoting an edge followed by a color of the edge. A color of an edge is denoted by a small letter of English alphabet, and it can be either red(r) or black(b).

Output Format
Print a single number i.e. the number of triplets.

Constraints
1 ≤ N ≤ 105
A node is numbered between 1 to N.

Sample Input

5
1 2 b
2 3 r
3 4 r
4 5 b
Sample Output

4```

### Solution :

```                            ```Solution in C :

In C ++ :

#define NDEBUG
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;

#define repeat(n) for (int repc = (n); repc > 0; --repc)
typedef long long int64;

struct UnionFind {
int n;

UnionFind(int n) : n(n) {
rank.resize(n);
size.resize(n);
reset();
}

void reset() {
for (int i=0; i<n; ++i) {
}
fill(rank.begin(), rank.end(), 0);
fill(size.begin(), size.end(), 1);
}

int find(int a) {
int top;
while (a != top) { int x = dad[a]; dad[a] = top; a = x; }
}

int union_find(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] > rank[b]) {
size[a] += size[b];
} else {
size[b] += size[a];
if (rank[a] == rank[b]) {
++rank[b];
}
}
return 1;
}
return 0;
}
};

int main() {
ios_base::sync_with_stdio(0);

int n;
cin >> n;

UnionFind uf(n);
repeat (n-1) {
int a, b;
char ch;
cin >> a >> b >> ws >> ch;
if (ch == 'b') {
uf.union_find(a-1, b-1);
}
}

auto choose3 = [](int x) { return int64(x) * (x-1) * (x-2) / 6; };
auto choose2 = [](int x) { return int64(x) * (x-1) / 2; };

int64 ans = choose3(n);
for (int i=0; i<n; ++i) {
if (uf.find(i) == i) {
int c = uf.size[i];
ans -= choose3(c);
ans -= choose2(c) * (n-c);
}
}
cout << ans % 1000000007 << '\n';
return 0;
}

In  Java :

import java.io.*;
import java.util.ArrayList;

public class Solution {

public static void solve(Input in, PrintWriter out) throws IOException {
int n = in.nextInt();
ArrayList<Integer>[] edges = new ArrayList[n];
for (int i = 0; i < n; ++i) {
edges[i] = new ArrayList<Integer>();
}
for (int i = 0; i < n - 1; ++i) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
if (in.next().equals("b")) {
}
}
boolean[] col = new boolean[n];
long c1 = 0, c2 = 0, c3 = 0;
for (int i = 0; i < n; ++i) {
if (!col[i]) {
int c = dfs(i, edges, col);
c3 += c * c2;
c2 += c * c1;
c1 += c;
}
}
out.println(c3 % 1000000007);
}

private static int dfs(int i, ArrayList<Integer>[] edges, boolean[] col) {
if (col[i]) {
return 0;
}
col[i] = true;
int r = 1;
for (int j : edges[i]) {
r += dfs(j, edges, col);
}
return r;
}

public static void main(String[] args) throws IOException {
PrintWriter out = new PrintWriter(System.out);
out.close();
}

static class Input {
StringBuilder sb = new StringBuilder();

this.in = in;
}

public Input(String s) {
}

public String next() throws IOException {
sb.setLength(0);
while (true) {
if (c == -1) {
return null;
}
if (" \n\r\t".indexOf(c) == -1) {
sb.append((char)c);
break;
}
}
while (true) {
if (c == -1 || " \n\r\t".indexOf(c) != -1) {
break;
}
sb.append((char)c);
}
return sb.toString();
}

public int nextInt() throws IOException {
return Integer.parseInt(next());
}

public long nextLong() throws IOException {
return Long.parseLong(next());
}

public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
}

In C :

#include<stdio.h>
#include<stdlib.h>
#define mod 1000000007
#define ll long long
ll nodes,hash,sz;

ll root(ll i)
{
while(i!=nodes[i])i=nodes[i];
return i;
}
void unon_ins(ll p,ll q)
{
ll i,j;
i=root(p);
j=root(q);
if(sz[i]<sz[j]){nodes[i]=j;sz[i]+=sz[j];}
else{nodes[j]=i;sz[j]+=sz[i];}
}

int main()
{

long long res,prod1,prod2,sum=0;
ll n,i,j,k,n_b=0;
char ch;
for(i=0;i<100005;i++)
nodes[i]=i;
scanf("%lld",&n);
for(i=1;i<n;i++)
{
ll x,y;
scanf("%lld %lld %c",&x,&y,&ch);
//printf("%d %d %c\n",x,y,ch);
if(ch=='b')
{
unon_ins(x,y);
n_b++;
}
}
if(((n-1)-n_b)>=2){

for(i=1;i<=n;i++)
hash[root(nodes[i])]++;

res=((n*(n-1)/2)*(n-2))/3;
for(i=1;i<=n;i++)
{
long long t=hash[i];
prod1=prod2=0;
prod1=((t*(t-1))/2)*(3*n-2*t-2)/3;
sum=(sum+prod1);
}
res=(res-sum);

printf("%lld\n",res%mod);}
else
printf("0\n");
return 0;
}

In Python3 :

n = int(input())

p = list(range(n))
rank =  * n
size =  * n

def get(v):
stack = []
while p[v] != v:
stack.append(v)
v = p[v]
for u in stack:
p[u] = v
return v

def union(v1, v2):
v1 = get(v1)
v2 = get(v2)
if v1 == v2:
return
if rank[v1] < rank[v2]:
v1, v2 = v2, v1
size[v1] += size[v2]
p[v2] = v1
rank[v1] += 1

for _ in range(n - 1):
x, y, col = input().split()
if col == 'b':
union(int(x) - 1, int(y) - 1)

a = [size[i] for i in range(n) if p[i] == i]

MOD = 10**9 + 7
def solve(a):
s1 = 
for x in a:
s1.append((s1[-1] + x) % MOD)
s2 = 
for i, x in enumerate(a):
s2.append((s2[-1] + x * s1[i]) % MOD)
s3 = 
for i, x in enumerate(a):
s3.append((s3[-1] + x * s2[i]) % MOD)
return s3[-1]

print(solve(a))```
```

## Components in a graph

There are 2 * N nodes in an undirected graph, and a number of edges connecting some nodes. In each edge, the first value will be between 1 and N, inclusive. The second node will be between N + 1 and , 2 * N inclusive. Given a list of edges, determine the size of the smallest and largest connected components that have or more nodes. A node can have any number of connections. The highest node valu

## Kundu and Tree

Kundu is true tree lover. Tree is a connected graph having N vertices and N-1 edges. Today when he got a tree, he colored each edge with one of either red(r) or black(b) color. He is interested in knowing how many triplets(a,b,c) of vertices are there , such that, there is atleast one edge having red color on all the three paths i.e. from vertex a to b, vertex b to c and vertex c to a . Note that

## Super Maximum Cost Queries

Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi in tree T has an integer weight, Wi. Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node . Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and

## Contacts

We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co

## No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

## Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor