# Super Maximum Cost Queries

### Problem Statement :

```Victoria has a tree, T , consisting of N nodes numbered from 1 to N. Each edge from node Ui to Vi  in tree T has an integer weight, Wi.

Let's define the cost, C, of a path from some node X to some other node Y as the maximum weight ( W ) for any edge in the unique path from node X to Y node .

Victoria wants your help processing Q queries on tree T, where each query contains 2 integers, L and R, such that L <= R . For each query, she wants to print the number of different paths in T  that have a cost, C , in the inclusive range [ L , R ] .

It should be noted that path from some node X to some other node Y is considered same as path from node Y to X  i.e  { X, Y }is same as { Y, X } .

Input Format

The first line contains 2 space-separated integers, N (the number of nodes) and Q (the number of queries), respectively.
Each of the N -1  subsequent lines contain 3 space-separated integers, U , V , and W, respectively, describing a bidirectional road between nodes U and V which has weight W.
The Q subsequent lines each contain 2 space-separated integers denoting L and R.

Constraints

1  <=  N,  Q  < = 10 ^5
1  <=   U, V  <=  N
1  <=  W   <=  10 ^ 9
1  <=  L  <=  R  <=  10^9

Output Format

For each of the Q queries, print the number of paths in T having cost C  in the inclusive range  [ L, R ] on a new line.```

### Solution :

```                            ```Solution in C :

In C++ :

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<cassert>
#define PB push_back
#define MP make_pair
#define sz(v) (in((v).size()))
#define forn(i,n) for(in i=0;i<(n);++i)
#define forv(i,v) forn(i,sz(v))
#define fors(i,s) for(auto i=(s).begin();i!=(s).end();++i)
#define all(v) (v).begin(),(v).end()
using namespace std;
typedef long long in;
typedef vector<in> VI;
typedef vector<VI> VVI;
struct unifnd{
VI ht,pr,ss;
in fnd(in a){
in ta=a;
while(a!=pr[a])a=pr[a];
in tt=ta;
while(ta!=a){
tt=pr[ta];
pr[ta]=a;
ta=tt;
}
return a;
}
in uni(in a, in b){
a=fnd(a);
b=fnd(b);
if(a==b)return 0;
if(ht[b]<ht[a])swap(a,b);
pr[a]=b;
in r=ss[a]*ss[b];
ss[b]+=ss[a];
ht[b]+=(ht[a]==ht[b]);
return r;
}
void ini(in n){
ht.resize(n);
pr.resize(n);
ss.resize(n);
forn(i,n){
ht[i]=0;
ss[i]=1;
pr[i]=i;
}
}
};
VI ans;
unifnd cf;
struct ev{
in typ,u,v,w;
ev(in a=0, in b=0, in c=0, in d=0){
typ=a;
u=b;
v=c;
w=d;
}
bool operator<(const ev cp)const{
if(w!=cp.w)
return w<cp.w;
if(typ!=cp.typ)
return typ<cp.typ;
return 0;
}
};
in sm=0;
void prev(ev tp){
if(tp.typ==1){
ans[tp.u]+=tp.v*sm;
return;
}
sm+=cf.uni(tp.u,tp.v);
}
vector<ev> evs;
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
in n,q;
cin>>n>>q;
cf.ini(n);
ans.resize(q,0);
in ta,tb,tc;
forn(i,n-1){
cin>>ta>>tb>>tc;
--ta;
--tb;
evs.PB(ev(0,ta,tb,tc));
}
forn(i,q){
cin>>ta>>tb;
evs.PB(ev(1,i,-1,ta-1));
evs.PB(ev(1,i,1,tb));
}
sort(all(evs));
forv(i,evs)
prev(evs[i]);
forv(i,ans)
cout<<ans[i]<<"\n";
return 0;
}

In Java :

import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;

import static java.lang.System.out;

class WeightCount {
private int weight;
private long count;

public WeightCount(int weight, long count) {
this.weight = weight;
this.count = count;
}

public int getWeight() {
return weight;
}
public long getCount() {
return count;
}

public void setWeight(int weight) {
this.weight = weight;
}
public void setCount(long count) {
this.count = count;
}

public static int lower(WeightCount[] array, int size, int key) {
if (array == null || size < 0)
return -1;

if (size == 0)
return 0;

int l = 0;
int r = size - 1;

int mid, weight;
while ((r - l) > 1) {
mid = l + ((r - l) >> 1);
weight = array[mid].getWeight();
if (weight > key)
r = mid - 1;
else if (weight < key)
l = mid;
else
r = mid;
}

if (array[l].getWeight() > key)
return l - 1;
if (key == array[l].getWeight() ||
array[r].getWeight() > key)
return l;
return r;
}
}

class Edge implements Comparable<Edge> {
private int u;
private int v;
private int w;

public Edge(int u, int v, int w) {
this.u = u;
this.v = v;
this.w = w;
}

public int getU() {
return u;
}
public int getV() {
return v;
}
public int getW() {
return w;
}

public void setU(int u) {
this.u = u;
}
public void setV(int v) {
this.v = v;
}
public void setW(int w) {
this.w = w;
}

public int compareTo(Edge e) {
if (e != null) {
int tmp = e.getW();
if (w < tmp)
return -1;
if (w > tmp)
return 1;
}

return 0;
}
}

class DisjointSet {
private static final int DEFAULT_SIZE = 31;

private int[] idx;
private int[] size;
private int n;
private int components;

public DisjointSet(int n) {
if (n < 1)
n = DEFAULT_SIZE;

idx = new int[n + 1];
size = new int[n + 1];

this.n = n;
components = n;

for (int i = n; i > 0; i--) {
idx[i] = i;
size[i] = 1;
}
}

public DisjointSet() {
this(DEFAULT_SIZE);
}

private int root(int i) {
if (i < 1 || i > n)
return 0;

int p = i;
while (idx[p] != p)
p = idx[p];

int tmp;
while (idx[i] != p) {
tmp = idx[i];
idx[i] = p;
i = tmp;
}

return p;
}

public long join(int p, int q) {
int rootP = root(p);
int rootQ = root(q);

if (rootP != rootQ) {
long result = (long) size[rootP] * size[rootQ];

if (size[rootP] < size[rootQ]) {
idx[rootP] = rootQ;
size[rootQ] += size[rootP];
} else {
idx[rootQ] = rootP;
size[rootP] += size[rootQ];
}

components--;
return result;
}

return 0;
}

public boolean isConnected(int p, int q) {
return (root(p) == root(q));
}
}

public class MaximumCostQueries {
private static final int MAX_N = 100000;
private static final int MAX_Q = 100000;

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);

int n = sc.nextInt();
int q = sc.nextInt();
if (n < 1 || n > MAX_N ||
q < 1 || q > MAX_Q)
return;

Edge[] edges = new Edge[n - 1];
int i, u, v, w;
for (i = n - 2; i >= 0; i--) {
u = sc.nextInt();
v = sc.nextInt();
w = sc.nextInt();

edges[i] = new Edge(u, v, w);
}

Arrays.sort(edges);

DisjointSet ds = new DisjointSet(n);
WeightCount[] wc = new WeightCount[n];
int j, k, limit;
long result;

limit = edges.length;
for (k = i = 0; i < limit; i = j) {
result = 0;
w = edges[i].getW();
j = i;

do {
result += ds.join(edges[j].getU(), edges[j].getV());
j++;
} while (j < limit && edges[j].getW() == w);

wc[k++] = new WeightCount(w, result);
}

// out.println("wc:");
// for (i = 0; i < k; i++)
//     out.println(wc[i].getWeight() + ": " + wc[i].getCount());

for (i = 1; i < k; i++)
wc[i].setCount(wc[i - 1].getCount() + wc[i].getCount());

while (q-- > 0) {
i = sc.nextInt();
j = sc.nextInt();

u = WeightCount.lower(wc, k, i - 1);
v = WeightCount.lower(wc, k, j);

result = wc[v].getCount() - ((u < 0) ? 0 : wc[u].getCount());
out.println(result);
}
sc.close();
}
}

In C :

#include <stdio.h>

static long long int a[100000][3], parent[100001], n;
void mer(int p, int q, int r)
{
static int le[100001][3], ri[100001][3], i, j, k;
int n1 = q - p + 1, n2 = r - q;
for (i = 0; i<n1; i++)
{
le[i][0] = a[p + i][0];
le[i][1] = a[p + i][1];
le[i][2] = a[p + i][2];
}
for (j = 0; j<n2; j++)
{
ri[j][0] = a[q + j + 1][0];
ri[j][1] = a[q + j + 1][1];
ri[j][2] = a[q + j + 1][2];
}
le[n1][2] = ri[n2][2] = 1000000001;
i = j = 0;
for (k = p; k <= r; k++)
{
if (le[i][2] <= ri[j][2])
{
a[k][0] = le[i][0];
a[k][1] = le[i][1];
a[k][2] = le[i][2];
i++;
}
else
{
a[k][0] = ri[j][0];
a[k][1] = ri[j][1];
a[k][2] = ri[j][2];
j++;
}
}
}
void merge_sort(int p, int r)
{
int q;
if (p<r)
{
q = (p + r) / 2;
merge_sort(p, q);
merge_sort(q + 1, r);
mer(p, q, r);
}
}

int getParent(int x)
{
if (x == parent[x])
return x;
parent[x] = getParent(parent[x]);
return parent[x];
}

int bin_search(int x)
{
int low, mid, upp;
low = 0;
upp = n;
mid = (low + upp) / 2;
while (low<upp)
{
if (x<a[mid][2])
{
upp = mid - 1;
}
else if (x>a[mid][2])
{
if (x >= a[mid + 1][2])
low = mid + 1;
if (x<a[mid + 1][2])
break;
}
else
{
break;
}
mid = (low + upp) / 2;
}
return mid;
}

int main() {
static long long int q, count[100001], i, j, k, x, y, z, px, py;
scanf("%lld%lld", &n, &q);
for (i = 1; i<n; i++)
{
parent[i] = i;
count[i] = 1;
scanf("%lld%lld%lld", &a[i][0], &a[i][1], &a[i][2]);
}
parent[i] = i;
count[i] = 1;
merge_sort(1, n - 1);
for (i = 1; i<n; i++)
{
x = a[i][0];
y = a[i][1];
px = getParent(x);
py = getParent(y);
a[i][0] = count[px] * count[py];
if (count[px] >= count[py])
{
count[px] += count[py];
parent[py] = px;
}
else
{
count[py] += count[px];
parent[px] = py;
}
}
for (i = 2, j = 1; i<n; i++)
{
if (a[j][2] == a[i][2])
{
a[j][0] += a[i][0];
}
else
{
j++;
a[j][0] = a[i][0] + a[j - 1][0];
a[j][2] = a[i][2];
}
}
n = j;
while (q--)
{
scanf("%lld%lld", &x, &y);
px = bin_search(x - 1);
py = bin_search(y);
printf("%lld\n", a[py][0] - a[px][0]);
}
return 0;
}

In Python3 :

import bisect as bs
n, q = map(int, input().split())
edges = [list(map(int, input().split())) for _ in range(1, n)]
edges.sort(key=lambda x: x[2])
paths = {}
union = [-1] * n

def getroot(x):
if union[x] < 0:
return x
union[x] = getroot(union[x])
return union[x]

for u, v, c in edges:
u = getroot(u - 1)
v = getroot(v - 1)
paths[c] = paths.get(c, 0) + union[u] * union[v]
if union[u] < union[v]:
u, v = v, u
union[v] += union[u]
union[u] = v

paths = list(sorted(paths.items()))
a = [0]
b =[0]
for x, y in paths:
a.append(x)
b.append(b[-1] + y)

for _ in range(q):
l, r = map(int, input().split())
print(b[bs.bisect(a, r) - 1] - b[bs.bisect_left(a, l) - 1])```
```

## Get Node Value

This challenge is part of a tutorial track by MyCodeSchool Given a pointer to the head of a linked list and a specific position, determine the data value at that position. Count backwards from the tail node. The tail is at postion 0, its parent is at 1 and so on. Example head refers to 3 -> 2 -> 1 -> 0 -> NULL positionFromTail = 2 Each of the data values matches its distance from the t

## Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -

## Cycle Detection

A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer

## Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

## Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

## Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.