Requirement


Problem Statement :


There are n variables and m requirements. Requirements are represented as (x <= y), meaning that the xth variable must be less than or equal to the yth variable.

Your task is to assign non-negative numbers smaller than 10 to each variable and then calculate the number of different assignments satisfying all requirements. Two assignments are different if and only if at least one variable is assigned to a different number in both assignments. Print your answer modulo  10^3 + 7.

Input Format

The first line contains 2 space-separated integers, n and m, respectively. Each of the m subsequent lines contains 2 space-seperated integers describing the respective x and y values for an (x <= y) requirement.

Constraints

0 < n < 14
0 < m < 200
0 < = x,y < n
Output Format

Print your answer modulo 10^3+7.



Solution :



title-img


                            Solution in C :

In C++ :





#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <sstream>
#include <vector>
#include <map>
#include <set>
#include <functional>
#include <numeric>
#include <utility>

using namespace std;

#define Rep(i,n) for(int i = 0; i < n; ++i)
#define Rep2(i, f, t) for(int i = (f); i <= (t); ++i)
#define tr(C,it) for(__typeof__((C).begin()) it = (C).begin();
#define it != (C).end(); ++it)
#define two(x) (1<<(x))

const int maxn = 13;
const int mod = 1007;
int req[maxn];
int sreq[1<<maxn], cnt[1<<maxn];
int n;
int tot_st;

int main() {
	int m;
	scanf("%d%d", &n, &m);
	int x, y;
	while(m--) {
		scanf("%d%d", &x, &y);
		req[x] |= two(y);
	}

	tot_st = 1<<n;
	sreq[0] = 0;
	Rep(i, n) {
		sreq[two(i)] = req[i];
	}
	Rep(i, tot_st) {
		if((i > 0) && ((i & -i) != i)) {
			int lowbit = i & -i;
			sreq[i] = sreq[i ^ lowbit] | sreq[lowbit];
		}
	}
	cnt[0] = 1;
	Rep(i, 10) {
		for(int j = tot_st - 1; j > 0; --j) {
			int A = j;
			while(A > 0) {
				if((sreq[A] & j) == sreq[A]) {
					cnt[j] += cnt[j ^ A];
				}

				A = (A - 1) & j;
			}
			cnt[j] %= mod;
		}

	}
	
	printf("%d\n", cnt[tot_st - 1]);
	return 0;
}








In Java :






import java.io.*;
import java.math.BigInteger;
import java.util.Random;
import java.util.StringTokenizer;

public class Solution {

    // leave empty to read from stdin/stdout
    private static final String TASK_NAME_FOR_IO = "";

    // file names
    private static final String FILE_IN = TASK_NAME_FOR_IO + ".in";
    private static final String FILE_OUT = TASK_NAME_FOR_IO + ".out";

    BufferedReader in;
    PrintWriter out;
    StringTokenizer tokenizer = new StringTokenizer("");

    public static void main(String[] args) {
        new Solution().run();
    }

    int n;
    boolean[][] a;

    private void solve() throws IOException {
        // stress();
        // timing();

        n = nextInt();
        int m = nextInt();
        a = new boolean[n][n];
        for (int k = 0; k < m; k++) {
            int u = nextInt();
            int v = nextInt();
            a[v][u] = true;
        }

        out.print(solveFast());
    }

    private void timing() {

        Random r = new Random(987654321L);
        int tcNum = 10000;

        /*
        for (int tcIdx = 0; tcIdx < tcNum; tcIdx++) {

            n = r.nextInt(9);
            a = new boolean[n][n];

            int m = r.nextInt(n * (n - 1) / 2 + 1);
            while (m > 0) {
                int i = r.nextInt(n);
                int j = r.nextInt(n);
                int k = r.nextInt(2);
                if (k == 0) {
                    a[i][j] = true;
                } else {
                    a[j][i] = true;
                }
                m--;
            }

            int ans = solveFast();
            System.out.println("OK (" + tcIdx + "/" + tcNum + "): " + ans);
        }
        */

        n = 13;
        a = new boolean[n][n];
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++) {
                a[i][j] = true;
            }
        solveFast();

        /*
        for (int tcIdx = 0; tcIdx < tcNum; tcIdx++) {

            n = 13;
            a = new boolean[n][n];
            for (int i = 0; i < n; i++)
                for (int j = i + 1; j < n; j++) {
                    int k = r.nextInt(2);
                    if (k == 0) {
                        a[i][j] = true;
                    } else {
                        a[j][i] = true;
                    }
                }

            long timeStart = System.currentTimeMillis();
            int ans = solveFast();
            long timeEnd = System.currentTimeMillis();

            System.out.println("OK (" + tcIdx + "/" + tcNum + "): " + ans);
            if (timeEnd - timeStart >= 2000) {
                System.err.println("!!! TL: " + (timeEnd - timeStart));

                int m = 0;
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        if (a[i][j]) {
                            m++;
                        }

                System.err.println(n + " " + m);
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        if (a[i][j]) {
                            System.err.println(i + " " + j);
                        }
            }
        }
        */
    }

    private void stress() {

        Random r = new Random(123456789L);
        int tcNum = 10000;
        for (int tcIdx = 0; tcIdx < tcNum; tcIdx++) {

            n = r.nextInt(8);
            a = new boolean[n][n];

            int m = r.nextInt(n * (n - 1) / 2 + 1);
            while (m > 0) {
                int i = r.nextInt(n);
                int j = r.nextInt(n);
                int k = r.nextInt(2);
                if (k == 0) {
                    a[i][j] = true;
                } else {
                    a[j][i] = true;
                }
                m--;
            }

            int ans1 = solveNaive();
            int ans2 = solveFast();
            if (ans1 == ans2) {
                System.out.println("OK (" + tcIdx + "/" + tcNum + "): "+ ans1 + " - " + ans2);
            } else {
                throw new IllegalStateException("Mismatch: " + ans1 + " " + ans2);
            }
        }

    }

    private int solveFast() {

        for (int i = 0; i < n; i++) {
            a[i][i] = false;
        }

        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                for (int k = 0; k < n; k++)
                    if (a[i][j] && a[j][k]) {
                        a[i][k] = false;
                    }

        for (int i = 0; i < n; i++) {
            reduce(i, i, 0, 0);
        }

        /*
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                for (int k = 0; k < n; k++)
                    if (a[i][j] && a[j][k]) {
                        a[i][k] = false;
                    }

        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                for (int k = 0; k < n; k++)
                    for (int l = 0; l < n; l++)
                        if (a[i][j] && a[j][k] && a[k][l]) {
                            a[i][l] = false;
                        }
        */


        int bestMask = getBestDominatingMask();
        assignedV = new int[n];
        return calcFast(0, bestMask);
    }

    private void reduce(int u, int src, int dist, int visited) {
        if ((visited & (1 << u)) != 0) {
            return;
        }
        visited |= 1 << u;

        if (dist > 1 && a[src][u]) {
            a[src][u] = false;
        }

        for (int v = 0; v < n; v++)
            if (a[u][v]) {
                reduce(v, src, dist + 1, visited);
            }
    }

    private int calcFast(int pos, int bestMask) {
        if (pos >= n) {

            // let's check where we are
            int answer = 1;
            for (int i = 0; i < n; i++)
                if ((bestMask & (1 << i)) != 0) {

                    for (int j = 0; j < n; j++) {
                        if (a[i][j] && ((bestMask & (1 << j)) != 0)) {
                            if (!(assignedV[i] >= assignedV[j])) {
                                return 0;
                            }
                        }
                        if (a[j][i] && ((bestMask & (1 << j)) != 0)) {
                            if (!(assignedV[j] >= assignedV[i])) {
                                return 0;
                            }
                        }
                    }

                } else {

                    // we have to determine the boundaries of i-th variable
                    int lo = 0;
                    int hi = 9;
                    for (int j = 0; j < n; j++) {

                        if (a[i][j]) {
                            if ((bestMask & (1 << j)) == 0) {
                                throw new IllegalStateException("Mask is not dominating");
                            }
                            lo = Math.max(lo, assignedV[j]);
                        }

                        if (a[j][i]) {
                            if ((bestMask & (1 << j)) == 0) {
                                throw new IllegalStateException("Mask is not dominating");
                            }
                            hi = Math.min(hi, assignedV[j]);
                        }

                    }

                    if (lo > hi) {
                        return 0;
                    }

                    answer *= hi - lo + 1;
                    if (answer >= MOD) {
                        answer %= MOD;
                    }

                }

            return answer;
        }

        // skip irrelevant vertices
        if ((bestMask & (1 << pos)) == 0) {
            return calcFast(pos + 1, bestMask);
        }

        // brute force
        int result = 0;
        for (int v = 0; v <= 9; v++){
            assignedV[pos] = v;
            result += calcFast(pos + 1, bestMask);
            if (result >= MOD) {
                result -= MOD;
            }
        }

        return result;
    }

    private int getBestDominatingMask() {
        int n2 = 1 << n;

        int bestBits = Integer.MAX_VALUE;
        int bestMask = Integer.MAX_VALUE;
        for (int mask = 0; mask < n2; mask++) {

            // let's iterate over all unmarked vertices
            boolean good = true;
            for (int i = 0; i < n; i++)
                if ((mask & (1 << i)) == 0) {

                    for (int j = 0; j < n; j++)
                        if (a[i][j] || a[j][i]) {
                            if ((mask & (1 << j)) == 0) {
                                good = false;
                                break;
                            }
                        }

                }

            if (good) {
                int bits = getBitCount(mask);
                if (bits < bestBits) {
                    bestBits = bits;
                    bestMask = mask;
                }
            }
        }
        return bestMask;
    }

    private int getBitCount(int mask) {
        int bits = 0;
        for (int j = 0; j < n; j++)
            if ((mask & (1 << j)) != 0) {
                bits++;
            }
        return bits;
    }

    private int solveNaive() {
        assignedV = new int[n];
        return calcNaive(0);
    }

    int[] assignedV;
    int MOD = 1007;

    private int calcNaive(int pos) {
        if (pos >= n) {
            boolean good = true;
            for (int i = 0; i < n; i++) {
                good &= checkAssignment(i, n - 1);
            }

            if (good) {
                return 1;
            }
            return 0;
        }

        int result = 0;
        for (int v = 0; v <= 9; v++){
            assignedV[pos] = v;
            if (checkAssignment(pos, pos)) {
                result += calcNaive(pos + 1);
                if (result >= MOD) {
                    result -= MOD;
                }
            }
        }

        return result;
    }

    private boolean checkAssignment(int pos, int limit) {
        // means that X[pos] >= X[i]
        boolean good = true;
        for (int i = 0; i < n; i++) {
            // variable has not been defined yet
            if (i > limit) {
                break;
            }

            // the following should hold: X[pos] >= X[i]
            if (a[pos][i] && !(assignedV[pos] >= assignedV[i])) {
                good = false;
                break;
            }

        }

        for (int i = 0; i < n; i++) {
            // variable has not been defined yet
            if (i > limit) {
                break;
            }

            // the following should hold: X[i] >= X[pos]
            if (a[i][pos] && !(assignedV[i] >= assignedV[pos])) {
                good = false;
                break;
            }
        }

        return good;
    }

    public void run() {
        long timeStart = System.currentTimeMillis();

        boolean fileIO = TASK_NAME_FOR_IO.length() > 0;
        try {

            if (fileIO) {
                in = new BufferedReader(new FileReader(FILE_IN));
                out = new PrintWriter(new FileWriter(FILE_OUT));
            } else {
                in = new BufferedReader(new InputStreamReader(System.in));
                out = new PrintWriter(new OutputStreamWriter(System.out));
            }

            solve();

            in.close();
            out.close();
        } catch (IOException e) {
            throw new IllegalStateException(e);
        }
        long timeEnd = System.currentTimeMillis();

        if (fileIO) {
            System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
        }
    }

    private String nextToken() throws IOException {
        while (!tokenizer.hasMoreTokens()) {
            String line = in.readLine();
            if (line == null) {
                return null;
            }
            tokenizer = new StringTokenizer(line);
        }
        return tokenizer.nextToken();
    }

    private int nextInt() throws IOException {
        return Integer.parseInt(nextToken());
    }

    private BigInteger nextBigInt() throws IOException {
        return new BigInteger(nextToken());
    }

    private long nextLong() throws IOException {
        return Long.parseLong(nextToken());
    }

    private double nextDouble() throws IOException {
        return Double.parseDouble(nextToken());
    }

}








In C :





#include <stdio.h>
#include <stdlib.h>

#define REQ_NONE 0
#define REQ_LE 1
#define REQ_EQ 2
#define REQ_GE 3

int n;
int m;

struct Req {
	int x;
	int y;
};

int ireq;
struct Req* oreqs;
int* counts;
int* sorted;

int** reqs;
int* depends;
int* conf;
int* start;
int* end;

void init() {
	ireq = 0;
	oreqs = (struct Req *)malloc(m * sizeof(struct Req));

	counts = (int *)malloc(n * sizeof(int));

	sorted = (int *)malloc(n * sizeof(int));

	reqs = (int **)malloc(n * sizeof(int *));
	for (int i = 0; i < n; ++i) {
		reqs[i] = (int *)malloc(n * sizeof(int));
		for (int j = 0; j < n; ++j) {
			reqs[i][j] = REQ_NONE;
		}
	}

	depends = (int *)malloc(n * sizeof(int));

	conf = (int *)malloc(n * sizeof(int));

	start = (int *)malloc(n * sizeof(int));
	end = (int *)malloc(n * sizeof(int));
}

void addReq(int x, int y) {
	oreqs[ireq].x = x;
	oreqs[ireq].y = y;
	++ireq;

	++counts[x];
	++counts[y];
}

void sort() {
	for (int i = 0; i < n; ++i) {
		sorted[i] = i;
	}

	for (int i = 0; i < n-1; ++i) {
		for (int j = 0; j < n; ++j) {
			if (counts[sorted[i]] > counts[sorted[j]]) {
				int t = sorted[i];
				sorted[i] = sorted[j];
				sorted[j] = t;
			}
		}
	}
}

void setReq(int x, int y) {
	if (x < y) {
		if (reqs[x][y] == REQ_NONE) {
			reqs[x][y] = REQ_LE;
		} else if (reqs[x][y] == REQ_GE) {
			reqs[x][y] = REQ_EQ;
		}
	} else {
		if (reqs[y][x] == REQ_NONE) {
			reqs[y][x] = REQ_GE;
		} else if (reqs[x][y] == REQ_LE) {
			reqs[y][x] = REQ_EQ;
		}
	}
}

void initReqs() {
	sort();

	for (int i = 0; i < m; ++i) {
		setReq(sorted[oreqs[i].x], sorted[oreqs[i].y]);
	}
}

void initDepends() {
	for (int i = 0; i < n; ++i) {
		depends[i] = 0;
		for (int j = i + 1; j < n; ++j) {
			if (reqs[i][j] != REQ_NONE) {
				depends[i] = 1;
				break;
			}
		}
	}

	for (int i = 0; i < n; ++i) {
		int p;

		for (p = 0; p < i; ++p) {
			if (reqs[p][i] != REQ_NONE) {
				break;
			}
		}
		start[i] = p;

		for (p = i - 1; p >= 0; --p) {
			if (reqs[p][i] != REQ_NONE) {
				break;
			}
		}
		end[i] = p + 1;
	}
}

int count(int i) {
	int min = 0;
	int max = 9;

	for (int p = start[i]; p < end[i]; ++p) {
		if (reqs[p][i] != REQ_NONE) {
			if (reqs[p][i] == REQ_LE) {
				if (conf[p] > min) {
					min = conf[p];
					if (min > max) {
						return 0;
					}
				}
			} else if (reqs[p][i] == REQ_GE) {
				if (conf[p] < max) {
					max = conf[p];
					if (min > max) {
						return 0;
					}
				}
			} else {
				if (min == max && min != conf[p]) {
					return 0;
				}
				min = conf[p];
				max = conf[p];
			}
		}
	}

	if (!depends[i]) {
		if (i == n - 1) {
			return max - min + 1;
		}
		return ((max - min + 1) * count(i + 1)) % 1007;
	}

	int c = 0;
	for (int x = min; x <= max; ++x) {
		conf[i] = x;
		c = (c + count(i + 1)) % 1007;
	}
	return c;
}

void printReqs() {
	static char symbols[] = { '.', '<', '=', '>' };
	for (int i = 0; i < n; ++i) {
		for (int j = 0; j < n; ++j) {
			printf("%c ", symbols[reqs[i][j]]);
		}
		printf("\n");
	}
	printf("\n");
}

int main() {
	//n = 6;
	//m = 7;

	scanf("%d %d", &n, &m);

	//n = 14;
	//m = n - 1;

	init();

	for (int i = 0; i < m; ++i) {
		int x, y;
		scanf("%d %d", &x, &y);
		addReq(x, y);
	}

	//addReq(1, 3);
	//addReq(0, 1);
	//addReq(2, 4);
	//addReq(0, 4);
	//addReq(2, 5);
	//addReq(3, 4);
	//addReq(0, 2);

	//for (int i = 0; i < n - 1; ++i) {
	//	addReq(i, n-1);
	//}

	initReqs();
	//printReqs();

	initDepends();

	printf("%d\n", count(0));

	return 0;
}








In Python3 :





'''
Created on Mar 26, 2013

@author: edogyaz
'''
import sys

n = 6 # between 0-9
maxn = 10
reqs = [(0,1), (1,2)]
reqs3 = [(1,3), (1,2)]
reqs2 = [(1,3), (0,1), (2,4),(0,4), (2,5),(3,4),(0,2)]

## how many different assignments (modulo by 1007)

def match_reqs(acc_list, reqs):
    for a,b in reqs:
        if acc_list[a] > acc_list[b]:
            return False
    
        
    return True

def req(n, reqs, acc_list):
    print(n, reqs, acc_list)
    summ = 0
    if (n == 0):
        if match_reqs(acc_list, reqs):
            return 1
        else:
            return 0
    
    
    for i in range(maxn):
        summ += req(n-1, reqs, acc_list + [i])
         
#    return summ % 1007
    return summ


def req2(n, reqs):
    if (n == 0):
        assert(reqs == [])
        return list(map(lambda x: [x], range(maxn)))
    
    reqs1, reqs2 = split_reqs(reqs, n)
    
    solutions = []
    subsolutions = req2(n-1, reqs1)
    print(n, len(subsolutions))
    print("FUCK YOU")
    for i in range(maxn):
        solutions += filter_list(subsolutions, i, reqs2)
    
    return solutions

def req22(n, reqs):
    return len(req2(n - 1, reqs)) % 1007

def split_reqs(reqs, n):
    reqs1 = []
    reqs2 = []
    for a,b in reqs:
        if a == n or b == n:
            reqs2.append((a,b))
        else:
            reqs1.append((a,b))
    return reqs1, reqs2

def filter_list(solutions, newval, reqs):
    result = []
    for solution in solutions:
        if match_reqs(solution + [newval], reqs):
            result.append(solution + [newval])
    return result
    
from operator import mul
from functools import reduce

def rlen(r):
    a,b = r
    if a > b:
        return 0
    return b-a+1

def update_ranges(ranges, val, reqs):
    removed_var = len(ranges)
    updated = list(ranges)
    for a,b in reqs:
        if a == removed_var:
            x, y = updated[b]
            if val > x:
                updated[b] = (val, y)
        if b == removed_var:
            x, y = updated[a]
            if val < y:
                updated[a] = (x, val)
    return updated

    
memodict = {}    
def req3(ranges, reqs):
    if (reqs == []):
        return reduce(mul, map(rlen, ranges), 1)
    
    key = (tuple(ranges),tuple(reqs))
    if key in memodict:
        return memodict[key]
        
    
    summ = 0
    lastr = ranges[-1]
    rest = ranges[:-1]
    
    a,b = lastr
    unrelated, related = split_reqs(reqs, len(rest))
    
    for val in range(a,b+1):
        updated = update_ranges(rest, val, related)
        summ += req3(updated, unrelated)

    summ = summ % 1007       
    memodict[key] = summ
    return summ


def req33(n, reqs):
    return req3([(0, maxn-1)] * n, reqs) % 1007

#print(req(n, reqs2, []) % 1007)

def runcommand():
    req_list = []
    n,m = map(int, sys.stdin.readline().split())
    for _ in range(m):
        a,b = map(int, sys.stdin.readline().split())
        req_list.append((a,b))
        
    print(req33(n, req_list))

runcommand()

#print(req22(6, reqs2))
#print(req33(6, reqs2))
                        








View More Similar Problems

Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

View Solution →

Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

View Solution →

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →

Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →

Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

View Solution →