Inserting a Node Into a Sorted Doubly Linked List
Problem Statement :
Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function in the editor below. sortedInsert has two parameters: DoublyLinkedListNode pointer head: a reference to the head of a doubly-linked list int data: An integer denoting the value of the data field for the DoublyLinkedListNode you must insert into the list. Returns DoublyLinkedListNode pointer: a reference to the head of the list Note: Recall that an empty list (i.e., where head = NULL ) and a list with one element are sorted lists. nput Format The first line contains an integer t, the number of test cases. Each of the test case is in the following format: The first line contains an integer n, the number of elements in the linked list. Each of the next n lines contains an integer, the data for each node of the linked list. The last line contains an integer, data , which needs to be inserted into the sorted doubly-linked list.
Solution :
Solution in C :
In C++ :
/*
Insert Node in a doubly sorted linked list
After each insertion, the list should be sorted
Node is defined as
struct Node
{
int data;
Node *next;
Node *prev
}
*/
Node* SortedInsert(Node *head,int data)
{
// Complete this function
// Do not write the main method.
Node *current = NULL;
Node *new_node = (Node*)malloc(sizeof(Node));
new_node->data=data;
new_node->next=NULL;
new_node->prev=NULL;
if (head == NULL )
{
head = new_node;
}
else if(head->data >= new_node->data)
{
new_node->next = head;
head->prev=new_node;
head = new_node;
}
else
{
current = head;
while (current->next!=NULL && current->next->data < new_node->data)
{
current = current->next;
}
if(current->next!=NULL)
{
new_node->next = current->next;
current->next->prev=new_node;
}
current->next = new_node;
new_node->prev=current;
}
return head;
}
In Java :
/*
Insert Node at the end of a linked list
head pointer input could be NULL as well for empty list
Node is defined as
class Node {
int data;
Node next;
Node prev;
}
*/
Node SortedInsert(Node head,int data) {
Node n= new Node();
n.data=data;
n.next=null;
n.prev=null;
if(head==null)
return n;
if(head.data > data)
{
n.next=head;
head.prev=n;
return n;
}
Node temp=head;
while(temp.next!=null)
{
if(temp.next.data > data)
{
n.next=temp.next;
n.prev=temp.next.prev;
temp.next=n;
n.next.prev=n;
return head;
}
temp=temp.next;
}
temp.next=n;
n.prev=temp;
return head;
}
In python3 :
"""
Insert a node into a sorted doubly linked list
head could be None as well for empty list
Node is defined as
class Node(object):
def __init__(self, data=None, next_node=None, prev_node = None):
self.data = data
self.next = next_node
self.prev = prev_node
return the head node of the updated list
"""
def SortedInsert(head, data):
new = Node(data=data)
tmp = head
while tmp.data <= data and tmp.next != None and tmp.next.data <= data:
tmp = tmp.next
new.prev = tmp
new.next = tmp.next
tmp.next = new
if new.next != None:
new.next.prev = new
return head
In C :
// Complete the sortedInsert function below.
/*
* For your reference:
*
* DoublyLinkedListNode {
* int data;
* DoublyLinkedListNode* next;
* DoublyLinkedListNode* prev;
* };
*
*/
DoublyLinkedListNode* sortedInsert(DoublyLinkedListNode* head, int data) {
DoublyLinkedListNode *New = create_doubly_linked_list_node(data);
if (!head)
{
head = New;
return head;
}
else if (data < (head->data))
{
New->next = head;
head->prev = New;
New->prev = NULL;
head = New;
return head;
}
else
{
DoublyLinkedListNode *temp = head;
while ( ((temp->next) != NULL) && ((temp->next->data) <= data))
temp = temp->next;
if (temp->next != NULL)
{
DoublyLinkedListNode *next = temp->next;
next->prev = New;
New->next = next;
}
else
New->next = NULL;
temp->next = New;
New->prev = temp;
}
return head;
}
View More Similar Problems
Cube Summation
You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor
View Solution →Direct Connections
Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do
View Solution →Subsequence Weighting
A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =
View Solution →Kindergarten Adventures
Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti
View Solution →Mr. X and His Shots
A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M
View Solution →Jim and the Skyscrapers
Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space
View Solution →