**Merge two sorted linked lists**

### Problem Statement :

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the heads of two sorted linked lists, merge them into a single, sorted linked list. Either head pointer may be null meaning that the corresponding list is empty. Example headA refers to 1 -> 3 -> 7 -> NULL headB refers to 1 -> 2 -> NULL The new list is 1 -> 1 -> 2 -> 3 -> 7 -> NULL. Function Description Complete the mergeLists function in the editor below. mergeLists has the following parameters: SinglyLinkedListNode pointer headA: a reference to the head of a list SinglyLinkedListNode pointer headB: a reference to the head of a list Returns SinglyLinkedListNode pointer: a reference to the head of the merged list Input Format The first line contains an integer t, the number of test cases. The format for each test case is as follows: The first line contains an integer n, the length of the first linked list. The next n lines contain an integer each, the elements of the linked list. The next line contains an integer m , the length of the second linked list. The next m lines contain an integer each, the elements of the second linked list.

### Solution :

` ````
Solution in C :
In C++ :
/*
Merge two sorted lists A and B as one linked list
Node is defined as
struct Node
{
int data;
struct Node *next;
}
*/
Node* MergeLists(Node *a, Node*b)
{
// This is a "method-only" submission.
// You only need to complete this method
Node* result = NULL;
/* Base cases */
if (a == NULL)
return(b);
else if (b==NULL)
return(a);
/* Pick either a or b, and recur */
if (a->data <= b->data)
{
result = a;
result->next = MergeLists(a->next, b);
}
else
{
result = b;
result->next = MergeLists(a, b->next);
}
return(result);
}
In C :
// Complete the mergeLists function below.
/*
* For your reference:
*
* SinglyLinkedListNode {
* int data;
* SinglyLinkedListNode* next;
* };
*
*/
SinglyLinkedListNode* mergeLists(SinglyLinkedListNode* head1, SinglyLinkedListNode* head2) {
SinglyLinkedList *newHead = malloc(sizeof(SinglyLinkedList));
newHead->head = NULL;
newHead->tail = NULL;
while(head1 != NULL && head2 != NULL){
if(head1->data > head2->data){
insert_node_into_singly_linked_list(&newHead, head2->data);
head2 = head2->next;
}
else if(head1->data < head2->data){
insert_node_into_singly_linked_list(&newHead, head1->data);
head1 = head1->next;
}
else{
insert_node_into_singly_linked_list(&newHead, head1->data);
insert_node_into_singly_linked_list(&newHead, head2->data);
head1 = head1->next;
head2 = head2->next;
}
}
while(head1 != NULL){
insert_node_into_singly_linked_list(&newHead, head1->data);
head1 = head1->next;
}
while(head2 != NULL){
insert_node_into_singly_linked_list(&newHead, head2->data);
head2 = head2->next;
}
return newHead->head;
}
In Java :
/*
Insert Node at the end of a linked list
head pointer input could be NULL as well for empty list
Node is defined as
class Node {
int data;
Node next;
}
*/
Node MergeLists(Node list1, Node list2) {
// This is a "method-only" submission.
// You only need to complete this method
Node dummy = new Node();
dummy.next=null;
dummy.data=0;
Node temp= dummy;
while(true)
{
if(list1==null)
{ temp.next = list2;
break;
}
else if(list2==null){
temp.next = list1;
break;
}
else if(list1.data < list2.data)
{
temp.next=list1;
list1=list1.next;
}
else{
temp.next=list2;
list2=list2.next;
}
temp=temp.next;
}
return dummy.next;
}
In python3 :
"""
Merge two linked lists
head could be None as well for empty list
Node is defined as
class Node(object):
def __init__(self, data=None, next_node=None):
self.data = data
self.next = next_node
return back the head of the linked list in the below method.
"""
def MergeLists(headA, headB):
if (headA==None) | (headB==None):
if(headA == None):
return headB
else:
return headA
if headA.data > headB.data: # headA points to the smaller one
temp = headA
headA = headB
headB = temp
head = headA
curA = headA.next # curA one step ahead
curB = headB
while (curA!=None) & (curB!=None):
if (curA.data>=curB.data):
headB =headB.next
curB.next = curA
headA.next = curB
headA = curA
curA = curA.next
curB = headB
else:
headA =curA
curA = curA.next
if curA == None:
headA.next = headB
return head
```

## View More Similar Problems

## Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →## Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →## Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →## Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →## Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →## Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary

View Solution →