Requirement


Problem Statement :


There are n variables and m requirements. Requirements are represented as (x <= y), meaning that the xth variable must be less than or equal to the yth variable.

Your task is to assign non-negative numbers smaller than 10 to each variable and then calculate the number of different assignments satisfying all requirements. Two assignments are different if and only if at least one variable is assigned to a different number in both assignments. Print your answer modulo  10^3 + 7.

Input Format

The first line contains 2 space-separated integers, n and m, respectively. Each of the m subsequent lines contains 2 space-seperated integers describing the respective x and y values for an (x <= y) requirement.

Constraints

0 < n < 14
0 < m < 200
0 < = x,y < n
Output Format

Print your answer modulo 10^3+7.



Solution :



title-img


                            Solution in C :

In C++ :





#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cstring>
#include <sstream>
#include <vector>
#include <map>
#include <set>
#include <functional>
#include <numeric>
#include <utility>

using namespace std;

#define Rep(i,n) for(int i = 0; i < n; ++i)
#define Rep2(i, f, t) for(int i = (f); i <= (t); ++i)
#define tr(C,it) for(__typeof__((C).begin()) it = (C).begin();
#define it != (C).end(); ++it)
#define two(x) (1<<(x))

const int maxn = 13;
const int mod = 1007;
int req[maxn];
int sreq[1<<maxn], cnt[1<<maxn];
int n;
int tot_st;

int main() {
	int m;
	scanf("%d%d", &n, &m);
	int x, y;
	while(m--) {
		scanf("%d%d", &x, &y);
		req[x] |= two(y);
	}

	tot_st = 1<<n;
	sreq[0] = 0;
	Rep(i, n) {
		sreq[two(i)] = req[i];
	}
	Rep(i, tot_st) {
		if((i > 0) && ((i & -i) != i)) {
			int lowbit = i & -i;
			sreq[i] = sreq[i ^ lowbit] | sreq[lowbit];
		}
	}
	cnt[0] = 1;
	Rep(i, 10) {
		for(int j = tot_st - 1; j > 0; --j) {
			int A = j;
			while(A > 0) {
				if((sreq[A] & j) == sreq[A]) {
					cnt[j] += cnt[j ^ A];
				}

				A = (A - 1) & j;
			}
			cnt[j] %= mod;
		}

	}
	
	printf("%d\n", cnt[tot_st - 1]);
	return 0;
}








In Java :






import java.io.*;
import java.math.BigInteger;
import java.util.Random;
import java.util.StringTokenizer;

public class Solution {

    // leave empty to read from stdin/stdout
    private static final String TASK_NAME_FOR_IO = "";

    // file names
    private static final String FILE_IN = TASK_NAME_FOR_IO + ".in";
    private static final String FILE_OUT = TASK_NAME_FOR_IO + ".out";

    BufferedReader in;
    PrintWriter out;
    StringTokenizer tokenizer = new StringTokenizer("");

    public static void main(String[] args) {
        new Solution().run();
    }

    int n;
    boolean[][] a;

    private void solve() throws IOException {
        // stress();
        // timing();

        n = nextInt();
        int m = nextInt();
        a = new boolean[n][n];
        for (int k = 0; k < m; k++) {
            int u = nextInt();
            int v = nextInt();
            a[v][u] = true;
        }

        out.print(solveFast());
    }

    private void timing() {

        Random r = new Random(987654321L);
        int tcNum = 10000;

        /*
        for (int tcIdx = 0; tcIdx < tcNum; tcIdx++) {

            n = r.nextInt(9);
            a = new boolean[n][n];

            int m = r.nextInt(n * (n - 1) / 2 + 1);
            while (m > 0) {
                int i = r.nextInt(n);
                int j = r.nextInt(n);
                int k = r.nextInt(2);
                if (k == 0) {
                    a[i][j] = true;
                } else {
                    a[j][i] = true;
                }
                m--;
            }

            int ans = solveFast();
            System.out.println("OK (" + tcIdx + "/" + tcNum + "): " + ans);
        }
        */

        n = 13;
        a = new boolean[n][n];
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++) {
                a[i][j] = true;
            }
        solveFast();

        /*
        for (int tcIdx = 0; tcIdx < tcNum; tcIdx++) {

            n = 13;
            a = new boolean[n][n];
            for (int i = 0; i < n; i++)
                for (int j = i + 1; j < n; j++) {
                    int k = r.nextInt(2);
                    if (k == 0) {
                        a[i][j] = true;
                    } else {
                        a[j][i] = true;
                    }
                }

            long timeStart = System.currentTimeMillis();
            int ans = solveFast();
            long timeEnd = System.currentTimeMillis();

            System.out.println("OK (" + tcIdx + "/" + tcNum + "): " + ans);
            if (timeEnd - timeStart >= 2000) {
                System.err.println("!!! TL: " + (timeEnd - timeStart));

                int m = 0;
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        if (a[i][j]) {
                            m++;
                        }

                System.err.println(n + " " + m);
                for (int i = 0; i < n; i++)
                    for (int j = 0; j < n; j++)
                        if (a[i][j]) {
                            System.err.println(i + " " + j);
                        }
            }
        }
        */
    }

    private void stress() {

        Random r = new Random(123456789L);
        int tcNum = 10000;
        for (int tcIdx = 0; tcIdx < tcNum; tcIdx++) {

            n = r.nextInt(8);
            a = new boolean[n][n];

            int m = r.nextInt(n * (n - 1) / 2 + 1);
            while (m > 0) {
                int i = r.nextInt(n);
                int j = r.nextInt(n);
                int k = r.nextInt(2);
                if (k == 0) {
                    a[i][j] = true;
                } else {
                    a[j][i] = true;
                }
                m--;
            }

            int ans1 = solveNaive();
            int ans2 = solveFast();
            if (ans1 == ans2) {
                System.out.println("OK (" + tcIdx + "/" + tcNum + "): "+ ans1 + " - " + ans2);
            } else {
                throw new IllegalStateException("Mismatch: " + ans1 + " " + ans2);
            }
        }

    }

    private int solveFast() {

        for (int i = 0; i < n; i++) {
            a[i][i] = false;
        }

        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                for (int k = 0; k < n; k++)
                    if (a[i][j] && a[j][k]) {
                        a[i][k] = false;
                    }

        for (int i = 0; i < n; i++) {
            reduce(i, i, 0, 0);
        }

        /*
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                for (int k = 0; k < n; k++)
                    if (a[i][j] && a[j][k]) {
                        a[i][k] = false;
                    }

        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                for (int k = 0; k < n; k++)
                    for (int l = 0; l < n; l++)
                        if (a[i][j] && a[j][k] && a[k][l]) {
                            a[i][l] = false;
                        }
        */


        int bestMask = getBestDominatingMask();
        assignedV = new int[n];
        return calcFast(0, bestMask);
    }

    private void reduce(int u, int src, int dist, int visited) {
        if ((visited & (1 << u)) != 0) {
            return;
        }
        visited |= 1 << u;

        if (dist > 1 && a[src][u]) {
            a[src][u] = false;
        }

        for (int v = 0; v < n; v++)
            if (a[u][v]) {
                reduce(v, src, dist + 1, visited);
            }
    }

    private int calcFast(int pos, int bestMask) {
        if (pos >= n) {

            // let's check where we are
            int answer = 1;
            for (int i = 0; i < n; i++)
                if ((bestMask & (1 << i)) != 0) {

                    for (int j = 0; j < n; j++) {
                        if (a[i][j] && ((bestMask & (1 << j)) != 0)) {
                            if (!(assignedV[i] >= assignedV[j])) {
                                return 0;
                            }
                        }
                        if (a[j][i] && ((bestMask & (1 << j)) != 0)) {
                            if (!(assignedV[j] >= assignedV[i])) {
                                return 0;
                            }
                        }
                    }

                } else {

                    // we have to determine the boundaries of i-th variable
                    int lo = 0;
                    int hi = 9;
                    for (int j = 0; j < n; j++) {

                        if (a[i][j]) {
                            if ((bestMask & (1 << j)) == 0) {
                                throw new IllegalStateException("Mask is not dominating");
                            }
                            lo = Math.max(lo, assignedV[j]);
                        }

                        if (a[j][i]) {
                            if ((bestMask & (1 << j)) == 0) {
                                throw new IllegalStateException("Mask is not dominating");
                            }
                            hi = Math.min(hi, assignedV[j]);
                        }

                    }

                    if (lo > hi) {
                        return 0;
                    }

                    answer *= hi - lo + 1;
                    if (answer >= MOD) {
                        answer %= MOD;
                    }

                }

            return answer;
        }

        // skip irrelevant vertices
        if ((bestMask & (1 << pos)) == 0) {
            return calcFast(pos + 1, bestMask);
        }

        // brute force
        int result = 0;
        for (int v = 0; v <= 9; v++){
            assignedV[pos] = v;
            result += calcFast(pos + 1, bestMask);
            if (result >= MOD) {
                result -= MOD;
            }
        }

        return result;
    }

    private int getBestDominatingMask() {
        int n2 = 1 << n;

        int bestBits = Integer.MAX_VALUE;
        int bestMask = Integer.MAX_VALUE;
        for (int mask = 0; mask < n2; mask++) {

            // let's iterate over all unmarked vertices
            boolean good = true;
            for (int i = 0; i < n; i++)
                if ((mask & (1 << i)) == 0) {

                    for (int j = 0; j < n; j++)
                        if (a[i][j] || a[j][i]) {
                            if ((mask & (1 << j)) == 0) {
                                good = false;
                                break;
                            }
                        }

                }

            if (good) {
                int bits = getBitCount(mask);
                if (bits < bestBits) {
                    bestBits = bits;
                    bestMask = mask;
                }
            }
        }
        return bestMask;
    }

    private int getBitCount(int mask) {
        int bits = 0;
        for (int j = 0; j < n; j++)
            if ((mask & (1 << j)) != 0) {
                bits++;
            }
        return bits;
    }

    private int solveNaive() {
        assignedV = new int[n];
        return calcNaive(0);
    }

    int[] assignedV;
    int MOD = 1007;

    private int calcNaive(int pos) {
        if (pos >= n) {
            boolean good = true;
            for (int i = 0; i < n; i++) {
                good &= checkAssignment(i, n - 1);
            }

            if (good) {
                return 1;
            }
            return 0;
        }

        int result = 0;
        for (int v = 0; v <= 9; v++){
            assignedV[pos] = v;
            if (checkAssignment(pos, pos)) {
                result += calcNaive(pos + 1);
                if (result >= MOD) {
                    result -= MOD;
                }
            }
        }

        return result;
    }

    private boolean checkAssignment(int pos, int limit) {
        // means that X[pos] >= X[i]
        boolean good = true;
        for (int i = 0; i < n; i++) {
            // variable has not been defined yet
            if (i > limit) {
                break;
            }

            // the following should hold: X[pos] >= X[i]
            if (a[pos][i] && !(assignedV[pos] >= assignedV[i])) {
                good = false;
                break;
            }

        }

        for (int i = 0; i < n; i++) {
            // variable has not been defined yet
            if (i > limit) {
                break;
            }

            // the following should hold: X[i] >= X[pos]
            if (a[i][pos] && !(assignedV[i] >= assignedV[pos])) {
                good = false;
                break;
            }
        }

        return good;
    }

    public void run() {
        long timeStart = System.currentTimeMillis();

        boolean fileIO = TASK_NAME_FOR_IO.length() > 0;
        try {

            if (fileIO) {
                in = new BufferedReader(new FileReader(FILE_IN));
                out = new PrintWriter(new FileWriter(FILE_OUT));
            } else {
                in = new BufferedReader(new InputStreamReader(System.in));
                out = new PrintWriter(new OutputStreamWriter(System.out));
            }

            solve();

            in.close();
            out.close();
        } catch (IOException e) {
            throw new IllegalStateException(e);
        }
        long timeEnd = System.currentTimeMillis();

        if (fileIO) {
            System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
        }
    }

    private String nextToken() throws IOException {
        while (!tokenizer.hasMoreTokens()) {
            String line = in.readLine();
            if (line == null) {
                return null;
            }
            tokenizer = new StringTokenizer(line);
        }
        return tokenizer.nextToken();
    }

    private int nextInt() throws IOException {
        return Integer.parseInt(nextToken());
    }

    private BigInteger nextBigInt() throws IOException {
        return new BigInteger(nextToken());
    }

    private long nextLong() throws IOException {
        return Long.parseLong(nextToken());
    }

    private double nextDouble() throws IOException {
        return Double.parseDouble(nextToken());
    }

}








In C :





#include <stdio.h>
#include <stdlib.h>

#define REQ_NONE 0
#define REQ_LE 1
#define REQ_EQ 2
#define REQ_GE 3

int n;
int m;

struct Req {
	int x;
	int y;
};

int ireq;
struct Req* oreqs;
int* counts;
int* sorted;

int** reqs;
int* depends;
int* conf;
int* start;
int* end;

void init() {
	ireq = 0;
	oreqs = (struct Req *)malloc(m * sizeof(struct Req));

	counts = (int *)malloc(n * sizeof(int));

	sorted = (int *)malloc(n * sizeof(int));

	reqs = (int **)malloc(n * sizeof(int *));
	for (int i = 0; i < n; ++i) {
		reqs[i] = (int *)malloc(n * sizeof(int));
		for (int j = 0; j < n; ++j) {
			reqs[i][j] = REQ_NONE;
		}
	}

	depends = (int *)malloc(n * sizeof(int));

	conf = (int *)malloc(n * sizeof(int));

	start = (int *)malloc(n * sizeof(int));
	end = (int *)malloc(n * sizeof(int));
}

void addReq(int x, int y) {
	oreqs[ireq].x = x;
	oreqs[ireq].y = y;
	++ireq;

	++counts[x];
	++counts[y];
}

void sort() {
	for (int i = 0; i < n; ++i) {
		sorted[i] = i;
	}

	for (int i = 0; i < n-1; ++i) {
		for (int j = 0; j < n; ++j) {
			if (counts[sorted[i]] > counts[sorted[j]]) {
				int t = sorted[i];
				sorted[i] = sorted[j];
				sorted[j] = t;
			}
		}
	}
}

void setReq(int x, int y) {
	if (x < y) {
		if (reqs[x][y] == REQ_NONE) {
			reqs[x][y] = REQ_LE;
		} else if (reqs[x][y] == REQ_GE) {
			reqs[x][y] = REQ_EQ;
		}
	} else {
		if (reqs[y][x] == REQ_NONE) {
			reqs[y][x] = REQ_GE;
		} else if (reqs[x][y] == REQ_LE) {
			reqs[y][x] = REQ_EQ;
		}
	}
}

void initReqs() {
	sort();

	for (int i = 0; i < m; ++i) {
		setReq(sorted[oreqs[i].x], sorted[oreqs[i].y]);
	}
}

void initDepends() {
	for (int i = 0; i < n; ++i) {
		depends[i] = 0;
		for (int j = i + 1; j < n; ++j) {
			if (reqs[i][j] != REQ_NONE) {
				depends[i] = 1;
				break;
			}
		}
	}

	for (int i = 0; i < n; ++i) {
		int p;

		for (p = 0; p < i; ++p) {
			if (reqs[p][i] != REQ_NONE) {
				break;
			}
		}
		start[i] = p;

		for (p = i - 1; p >= 0; --p) {
			if (reqs[p][i] != REQ_NONE) {
				break;
			}
		}
		end[i] = p + 1;
	}
}

int count(int i) {
	int min = 0;
	int max = 9;

	for (int p = start[i]; p < end[i]; ++p) {
		if (reqs[p][i] != REQ_NONE) {
			if (reqs[p][i] == REQ_LE) {
				if (conf[p] > min) {
					min = conf[p];
					if (min > max) {
						return 0;
					}
				}
			} else if (reqs[p][i] == REQ_GE) {
				if (conf[p] < max) {
					max = conf[p];
					if (min > max) {
						return 0;
					}
				}
			} else {
				if (min == max && min != conf[p]) {
					return 0;
				}
				min = conf[p];
				max = conf[p];
			}
		}
	}

	if (!depends[i]) {
		if (i == n - 1) {
			return max - min + 1;
		}
		return ((max - min + 1) * count(i + 1)) % 1007;
	}

	int c = 0;
	for (int x = min; x <= max; ++x) {
		conf[i] = x;
		c = (c + count(i + 1)) % 1007;
	}
	return c;
}

void printReqs() {
	static char symbols[] = { '.', '<', '=', '>' };
	for (int i = 0; i < n; ++i) {
		for (int j = 0; j < n; ++j) {
			printf("%c ", symbols[reqs[i][j]]);
		}
		printf("\n");
	}
	printf("\n");
}

int main() {
	//n = 6;
	//m = 7;

	scanf("%d %d", &n, &m);

	//n = 14;
	//m = n - 1;

	init();

	for (int i = 0; i < m; ++i) {
		int x, y;
		scanf("%d %d", &x, &y);
		addReq(x, y);
	}

	//addReq(1, 3);
	//addReq(0, 1);
	//addReq(2, 4);
	//addReq(0, 4);
	//addReq(2, 5);
	//addReq(3, 4);
	//addReq(0, 2);

	//for (int i = 0; i < n - 1; ++i) {
	//	addReq(i, n-1);
	//}

	initReqs();
	//printReqs();

	initDepends();

	printf("%d\n", count(0));

	return 0;
}








In Python3 :





'''
Created on Mar 26, 2013

@author: edogyaz
'''
import sys

n = 6 # between 0-9
maxn = 10
reqs = [(0,1), (1,2)]
reqs3 = [(1,3), (1,2)]
reqs2 = [(1,3), (0,1), (2,4),(0,4), (2,5),(3,4),(0,2)]

## how many different assignments (modulo by 1007)

def match_reqs(acc_list, reqs):
    for a,b in reqs:
        if acc_list[a] > acc_list[b]:
            return False
    
        
    return True

def req(n, reqs, acc_list):
    print(n, reqs, acc_list)
    summ = 0
    if (n == 0):
        if match_reqs(acc_list, reqs):
            return 1
        else:
            return 0
    
    
    for i in range(maxn):
        summ += req(n-1, reqs, acc_list + [i])
         
#    return summ % 1007
    return summ


def req2(n, reqs):
    if (n == 0):
        assert(reqs == [])
        return list(map(lambda x: [x], range(maxn)))
    
    reqs1, reqs2 = split_reqs(reqs, n)
    
    solutions = []
    subsolutions = req2(n-1, reqs1)
    print(n, len(subsolutions))
    print("FUCK YOU")
    for i in range(maxn):
        solutions += filter_list(subsolutions, i, reqs2)
    
    return solutions

def req22(n, reqs):
    return len(req2(n - 1, reqs)) % 1007

def split_reqs(reqs, n):
    reqs1 = []
    reqs2 = []
    for a,b in reqs:
        if a == n or b == n:
            reqs2.append((a,b))
        else:
            reqs1.append((a,b))
    return reqs1, reqs2

def filter_list(solutions, newval, reqs):
    result = []
    for solution in solutions:
        if match_reqs(solution + [newval], reqs):
            result.append(solution + [newval])
    return result
    
from operator import mul
from functools import reduce

def rlen(r):
    a,b = r
    if a > b:
        return 0
    return b-a+1

def update_ranges(ranges, val, reqs):
    removed_var = len(ranges)
    updated = list(ranges)
    for a,b in reqs:
        if a == removed_var:
            x, y = updated[b]
            if val > x:
                updated[b] = (val, y)
        if b == removed_var:
            x, y = updated[a]
            if val < y:
                updated[a] = (x, val)
    return updated

    
memodict = {}    
def req3(ranges, reqs):
    if (reqs == []):
        return reduce(mul, map(rlen, ranges), 1)
    
    key = (tuple(ranges),tuple(reqs))
    if key in memodict:
        return memodict[key]
        
    
    summ = 0
    lastr = ranges[-1]
    rest = ranges[:-1]
    
    a,b = lastr
    unrelated, related = split_reqs(reqs, len(rest))
    
    for val in range(a,b+1):
        updated = update_ranges(rest, val, related)
        summ += req3(updated, unrelated)

    summ = summ % 1007       
    memodict[key] = summ
    return summ


def req33(n, reqs):
    return req3([(0, maxn-1)] * n, reqs) % 1007

#print(req(n, reqs2, []) % 1007)

def runcommand():
    req_list = []
    n,m = map(int, sys.stdin.readline().split())
    for _ in range(m):
        a,b = map(int, sys.stdin.readline().split())
        req_list.append((a,b))
        
    print(req33(n, req_list))

runcommand()

#print(req22(6, reqs2))
#print(req33(6, reqs2))
                        








View More Similar Problems

AND xor OR

Given an array of distinct elements. Let and be the smallest and the next smallest element in the interval where . . where , are the bitwise operators , and respectively. Your task is to find the maximum possible value of . Input Format First line contains integer N. Second line contains N integers, representing elements of the array A[] . Output Format Print the value

View Solution →

Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the

View Solution →

Queue using Two Stacks

A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que

View Solution →

Castle on the Grid

You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):

View Solution →

Down to Zero II

You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.

View Solution →

Truck Tour

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr

View Solution →