Range Query on a List - Mutable - Google Top Interview Questions


Problem Statement :


Implement a data structure with the following methods:

RangeSum(int[] nums) constructs a new instance with the given nums

total(int i, int j) returns the sum of integers from nums between [i, j). That is, nums[i] + nums[i + 1] + ... + nums[j - 1]

update(int idx, int val) updates nums[idx] with value val

Constraints

n ≤ 100,000 where n is the length of nums

k ≤ 100,000 where k is the number of calls to total

(overflows)

Example 1

Input

methods = ["constructor", "total", "update", "total"]

arguments = [[[1, 2, 5]], [0, 3], [1, 4], [0, 3]]`

Output

[None, 8, None, 10]

Explanation

r = MutableRangeSum([1,2,5,0,3,7])

r.total(0, 3) == 8 # sum([1, 2, 5])

r.update(1, 4)

r.total(0, 3) == 10 # sum([1, 4, 5])



Solution :



title-img




                        Solution in C++ :

#pragma GCC optimize("Ofast")
#pragma GCC target("tune=native")
#pragma GCC optimize("unroll-loops")
class MutableRangeSum {
    int n, len;
    vector<int> nums, blocks;

    public:
    MutableRangeSum(vector<int>& nums) {
        n = (int)nums.size();
        len = sqrt(n);
        this->nums = nums;
        blocks.assign(n / len, 0);
        for (int i = 0; i < n; i++) blocks[i / len] += nums[i];
    }
    int total(int i, int j) {
        int sum = 0;
        for (int x = i; x < j;)
            if (x % len == 0 && x + len < j)
                sum += blocks[x / len], x += len;
            else
                sum += nums[x++];
        return sum;
    }
    void update(int idx, int val) {
        blocks[idx / len] += val - nums[idx];
        nums[idx] = val;
    }
};
                    


                        Solution in Java :

import java.util.*;

class SegmentTree {
    int size;
    long[] operations;

    SegmentTree(int n) {
        this.size = 1;
        while (size < n) size *= 2;
        operations = new long[size * 2];
    }

    void set(int idx, int val) {
        set(idx, val, 0, 0, size);
    }

    void set(int idx, int val, int x, int lx, int rx) {
        if (rx - lx == 1) {
            operations[x] = val;
            return;
        }
        int mx = (rx + lx) / 2;
        if (idx < mx) {
            set(idx, val, 2 * x + 1, lx, mx);
        } else {
            set(idx, val, 2 * x + 2, mx, rx);
        }
        operations[x] = operations[2 * x + 1] + operations[2 * x + 2];
    }

    long query(int l, int r) {
        return query(l, r, 0, 0, size);
    }

    long query(int l, int r, int x, int lx, int rx) {
        if (lx >= r || l >= rx)
            return 0;
        if (lx >= l && rx <= r)
            return operations[x];
        int mx = (lx + rx) / 2;
        long left = query(l, r, 2 * x + 1, lx, mx);
        long right = query(l, r, 2 * x + 2, mx, rx);
        return left + right;
    }
}
class MutableRangeSum {
    SegmentTree st;
    public MutableRangeSum(int[] nums) {
        st = new SegmentTree(nums.length);
        for (int i = 0; i < nums.length; i++) {
            st.set(i, nums[i]);
        }
    }

    public int total(int i, int j) {
        return (int) st.query(i, j);
    }

    public void update(int idx, int val) {
        st.set(idx, val);
    }
}
                    


                        Solution in Python : 
                            
class Fenwick:
    def __init__(self, n):
        self.items = [0] * (n + 1)

    def update(self, idx, val):
        while idx < len(self.items):
            self.items[idx] += val
            idx += idx & -idx

    def get_sum(self, idx):
        res = 0
        while idx > 0:
            res += self.items[idx]
            idx -= idx & -idx
        return res

    def get_range_sum(self, l, r):
        return self.get_sum(r - 1) - self.get_sum(l - 1)


class MutableRangeSum:
    def __init__(self, nums):
        self.fw = Fenwick(len(nums))
        for i in range(len(nums)):
            self.fw.update(i + 1, nums[i])

    def total(self, i, j):
        return self.fw.get_range_sum(i + 1, j + 1)

    def update(self, idx, val):
        cur_val = self.fw.get_sum(idx + 1) - self.fw.get_sum(idx)
        self.fw.update(idx + 1, val - cur_val)
                    


View More Similar Problems

Costly Intervals

Given an array, your goal is to find, for each element, the largest subarray containing it whose cost is at least k. Specifically, let A = [A1, A2, . . . , An ] be an array of length n, and let be the subarray from index l to index r. Also, Let MAX( l, r ) be the largest number in Al. . . r. Let MIN( l, r ) be the smallest number in Al . . .r . Let OR( l , r ) be the bitwise OR of the

View Solution →

The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

View Solution →

Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

View Solution →

Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

View Solution →

Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

View Solution →

Pair Sums

Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v

View Solution →