Polyglot Contest - Amazon Top Interview Questions

Problem Statement :

You are given a two-dimensional list of strings languages, where languages[i] is a list of programming languages person i is fluent in.

Consider any list of programming languages such that everyone knows at least one language in it. Return the minimum size of such list.


1 ≤ n, m ≤ 16 where n and m are the number of rows and columns in languages.
1 ≤ l ≤ 32 where l is the total number of distinct strings in languages.

Example 1


languages = [
    ["Java", "Perl"],
    ["C++", "Python"],




There is no overlap between the languages. Therefore any combination that uses one language from each participant is valid.

Example 2


languages = [
    ["Java", "C++", "Python"],
    ["Python", "Cobol", "Java"],
    ["C++", "Haskell"],
    ["Ruby", "C++"]




Valid combinations are ["Cobol", "C++"], ["Java", "C++"] and ["Python", "C++"].

Example 3


languages = [
    ["C", "Python", "Haskell", "Kotlin"],
    ["Java", "JavaScript", "C++", "Rust"],
    ["JavaScript", "Python", "C++"],
    ["Ruby", "C++"],
    ["Rust", "Python", "Java"]




The only minimal combination is ["Python", "C++"].

Solution :


                        Solution in C++ :

int solve(vector<vector<string>>& languages) {
    int persons_count = languages.size();

    vector<int> dp(1 << persons_count, INT32_MAX);

    unordered_map<string, int> language_masks;
    for (int i = 0; i < languages.size(); ++i) {
        for (const auto& language : languages[i]) {
            language_masks[language] |= (1 << i);

    dp[0] = 0;
    for (int mask = 1; mask < (1 << persons_count); ++mask) {
        int bit = __builtin_ctz(mask);

        for (auto& l : languages[bit]) {
            int new_mask = mask ^ (language_masks[l] & mask);
            dp[mask] = min(dp[mask], 1 + dp[new_mask]);

    return dp[(1 << persons_count) - 1];

                        Solution in Python : 
class Solution:
    def solve(self, languages):
        language_set = functools.reduce(set.union, map(set, languages))
        language_index = {language: index for index, language in enumerate(language_set)}
        language_masks = [
            sum((1 << language_index[language]) for language in participant_languages)
            for participant_languages in languages
        n = len(languages)
        l = len(language_set)

        def dp(language_index, participant_mask):
            if not participant_mask:
                return 0
            if language_index == l:
                return math.inf

            new_participant_mask = participant_mask
            for participant_index in range(n):
                if new_participant_mask & (1 << participant_index) and language_masks[
                ] & (1 << language_index):
                    new_participant_mask ^= 1 << participant_index

            return min(
                1 + dp(language_index + 1, new_participant_mask),
                dp(language_index + 1, participant_mask),

        return dp(0, (1 << n) - 1)

View More Similar Problems

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →

Mr. X and His Shots

A cricket match is going to be held. The field is represented by a 1D plane. A cricketer, Mr. X has N favorite shots. Each shot has a particular range. The range of the ith shot is from Ai to Bi. That means his favorite shot can be anywhere in this range. Each player on the opposite team can field only in a particular range. Player i can field from Ci to Di. You are given the N favorite shots of M

View Solution →

Jim and the Skyscrapers

Jim has invented a new flying object called HZ42. HZ42 is like a broom and can only fly horizontally, independent of the environment. One day, Jim started his flight from Dubai's highest skyscraper, traveled some distance and landed on another skyscraper of same height! So much fun! But unfortunately, new skyscrapers have been built recently. Let us describe the problem in one dimensional space

View Solution →

Palindromic Subsets

Consider a lowercase English alphabetic letter character denoted by c. A shift operation on some c turns it into the next letter in the alphabet. For example, and ,shift(a) = b , shift(e) = f, shift(z) = a . Given a zero-indexed string, s, of n lowercase letters, perform q queries on s where each query takes one of the following two forms: 1 i j t: All letters in the inclusive range from i t

View Solution →

Counting On a Tree

Taylor loves trees, and this new challenge has him stumped! Consider a tree, t, consisting of n nodes. Each node is numbered from 1 to n, and each node i has an integer, ci, attached to it. A query on tree t takes the form w x y z. To process a query, you must print the count of ordered pairs of integers ( i , j ) such that the following four conditions are all satisfied: the path from n

View Solution →