# Police Operation

### Problem Statement :

```Roy is helping the police department of his city in crime fighting. Today, they informed him about a new planned operation.

Think of the city as a 2D plane. The road along the X-axis is very crime prone, because n criminals live there. No two criminals live at the same position.

To catch these criminals, the police department has to recruit some police officers and give each of them USD h as wages. A police officer can start his operation from any point a, drive his car to point b in a straight line, and catch all the criminals who live on this way. The cost of fuel used by the officer's car is equal to the square of the euclidean distance between points a and b (Euclidean distance between points (xi,yi) and (x2,y2) equals to  sqrt((x1,y1)^2+(y1-y2)^2).

The police department asks Roy to plan this operation. So Roy has to tell them the number of officers to recruit and the routes these officers should take in order to catch all the criminals. Roy has to provide this information while minimizing the total expenses of this operation.

Find out the minimum amount of money required to complete the operation.

Input Format

The first line contains two integers n (0 <= n <= 2*10^6), number of criminals, and h (0 <= h <= 10^9) , the cost of recruiting a police officer. The next line contains n space separated integers. The ith integer indicates the position of the  criminal on X-axis (in other words, if the ith integer is x, then location of the ith criminal is (x,0)). The value of the positions are between 1 and 10^9 and are given in increasing order in the input.

Output Format

Print the minimum amount of money required to complete the operation.```

### Solution :

```                            ```Solution in C :

In C++ :

#include <cstdio>
#include <algorithm>
#include <vector>

#define MAXN 3000000
#define INF 123456789012345LL

#define X first
#define Y second
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long ll;
typedef pair< ll, ll > pll;

vector< pll > S;
int A[ MAXN + 1 ];
ll dp[ MAXN + 1 ];

ll intersect( pll A, pll B ) {
if( A.X == B.X ) return 0;
return ( B.Y - A.Y ) / ( A.X - B.X );
}

ll evaluate( int idx, ll x ) {
return S[ idx ].X * x + S[ idx ].Y;
}

ll find( ll x ) {
int lo = 0, hi = S.size() - 1;
while( lo < hi ) {
int mid = ( lo + hi ) / 2;
if( evaluate( mid, x ) <= evaluate( mid + 1, x ) ) {
hi = mid;
} else {
lo = mid + 1;
}
}
return evaluate( lo, x );
}

void insert( pll A ) {
while( S.size() >= 2 && intersect(
A, S[ S.size() - 2 ] ) > intersect( S[ S.size() - 2 ], S[ S.size() - 1 ] ) )
{
S.pop_back();
}
S.pb( A );
}
int main() {
int N, H;
scanf("%d%d", &N, &H );
for( int i = 1; i <= N; i++ ) {
scanf("%d", &A[ i ] );
}
sort( A + 1, A + N + 1 );
for( int i = 1; i <= N; i++ ) {
insert( mp( ( ll )A[ i ], dp[ i - 1 ] + ( ll )1LL*A[ i ] * A[ i ] + H ) );
dp[ i ] = ( ll )1LL*A[ i ] * A[ i ] + find( -2*A[ i ] );
}
printf("%lld\n", dp[ N ] );
return 0;
}

In Java :

import java.io.*;
import java.util.*;

public class Solution {

PrintWriter out;
StringTokenizer st;
boolean eof;

static class Line {
long k;
long b; // y = k * x + b

public Line(long k, long b) {
this.k = k;
this.b = b;
}

double cross(Line o) {
return 1.0 * (o.b - b) / (k - o.k);
}

long vect(Line a) {
return k * a.b - a.k * b;
}
}

boolean badTurn(Line a, Line b, Line c) {
return a.vect(b) + b.vect(c) + c.vect(a) >= 0;
}

void solve() throws IOException {
int n = nextInt();
int h = nextInt();
int[] xs = new int[n];
for (int i = 0; i < n; i++) {
xs[i] = nextInt();
}
if (n == 0) {
out.println(0);
return;
}
if (n == 1) {
out.println(h);
return;
}
long[] dp = new long[n + 1];
Line[] s = new Line[n + 1];
int sz = 0;
s[sz++] = new Line(-2 * xs[0], h + sqr(xs[0]));
double[] c = new double[n + 1];
for (int i = 0; i < n; i++) {
int pos = Arrays.binarySearch(c, 0, sz - 1, xs[i]);
if (pos < 0) {
pos = -pos - 1;
}
dp[i + 1] = Long.MAX_VALUE;
for (int j = pos - 1; j <= pos + 1; j++) {
if (j >= 0 && j < sz) {
dp[i + 1] = Math.min(dp[i + 1], s[j].k * xs[i] + s[j].b);
}
}
dp[i + 1] += sqr(xs[i]);
if (i != n - 1) {
Line add = new Line(-2 * xs[i + 1], h + dp[i + 1] + sqr(xs[i + 1]));
//				System.err.println(dp[i + 1] + ", " + add.k + " " + add.b);
while (sz > 1 && badTurn(s[sz - 2], s[sz - 1], add)) {
sz--;
}
c[sz - 2] = s[sz - 2].cross(s[sz - 1]);
}
}
out.println(dp[n]);
}

static long sqr(long x) {
return x * x;
}

Solution() throws IOException {
out = new PrintWriter(System.out);
solve();
out.close();
}

public static void main(String[] args) throws IOException {
new Solution();
}

String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}

String nextString() {
try {
} catch (IOException e) {
eof = true;
return null;
}
}

int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}

long nextLong() throws IOException {
return Long.parseLong(nextToken());
}

double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}

In C :

#include <stdio.h>
#include <stdlib.h>
int get_i(double *a,int num,int size);
double med(double *a,int size);
double inter(long long m1,long long n1,long long m2,long long n2);
int a[2000000];
long long dp[2000000],m[2000000],n[2000000];
double aa[2000000];

int main(){
int N,h,aa_size=0,i,j;
long long t,tt;
scanf("%d%d",&N,&h);
for(i=0;i<N;i++)
scanf("%d",a+i);
for(i=0;i<N;i++){
if(i)
dp[i]=h+dp[i-1];
else
dp[i]=h;
if(i && a[i]==a[i-1]){
dp[i]=dp[i-1];
continue;
}
if(aa_size){
j=get_i(aa,a[i],aa_size-1);
t=a[i]*(long long)a[i]+m[j]*a[i]+n[j];
if(t<dp[i])
dp[i]=t;
}
m[aa_size]=-2*a[i];
if(i)
n[aa_size]=a[i]*(long long)a[i]+h+dp[i-1];
else
n[aa_size]=a[i]*(long long)a[i]+h;
j=++aa_size;
while(aa_size>2){
if(inter(m[aa_size-3],n[aa_size-3],m[j-1],n[j-1])>aa[aa_size-3])
break;
aa_size--;
}
tt=m[j-1];
m[j-1]=m[aa_size-1];
m[aa_size-1]=tt;
tt=n[j-1];
n[j-1]=n[aa_size-1];
n[aa_size-1]=tt;
if(aa_size>1)
aa[aa_size-2]=inter(m[aa_size-2],n[aa_size-2],m[aa_size-1],n[aa_size-1]);
}
printf("%lld",dp[N-1]);
return 0;
}
int get_i(double *a,int num,int size){
if(size==0)
return 0;
if(num>med(a,size))
return get_i(&a[(size+1)>>1],num,size>>1)+((size+1)>>1);
else
return get_i(a,num,(size-1)>>1);
}
double med(double *a,int size){
return a[(size-1)>>1];
}
double inter(long long m1,long long n1,long long m2,long long n2){
return (n2-n1)/(double)(m1-m2);
}

In Python3 :

#!/bin/python3

import os
import sys

#
# Complete the policeOperation function below.
#
def cross(f, g):
return (g[1]-f[1])/(f[0]-g[0])

def policeOperation(h, criminals):
n = len(criminals)
dp = 0
stack = []
fpos = 0
for i in range(0,n):
f = [-2*criminals[i],criminals[i]*criminals[i] + dp,0]

while len(stack) > 0:
f[2] = cross(stack[-1], f)
if stack[-1][2] < f[2]:
break
stack.pop()
if len(stack) == fpos:
fpos -= 1

stack.append(f)
x = criminals[i];
while fpos+1 < len(stack) and stack[fpos+1][2] < x: fpos += 1
dp = stack[fpos][0] * x + stack[fpos][1] + h + x*x;

return dp

if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')

nh = input().split()

n = int(nh[0])

h = int(nh[1])
result = 0
if n != 0:
criminals = list(map(int, input().rstrip().split()))
result = policeOperation(h, criminals)

fptr.write(str(result) + '\n')

fptr.close()```
```

## Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

## Insert a node at a specific position in a linked list

Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e

## Delete a Node

Delete the node at a given position in a linked list and return a reference to the head node. The head is at position 0. The list may be empty after you delete the node. In that case, return a null value. Example: list=0->1->2->3 position=2 After removing the node at position 2, list'= 0->1->-3. Function Description: Complete the deleteNode function in the editor below. deleteNo

## Print in Reverse

Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing