Direct Connections

Problem Statement :

Enter-View ( EV )  is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points.

Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) doesn't know anything about the modern telecom technologies, except for peer-to-peer connections. Even worse, his thoughts on peer-to-peer connections are extremely faulty: he believes that, if Pi  people are living in city i , there must be at least  cables from city  to every other city of EV - this way he can guarantee no congestion will ever occur!

Mr. Treat hires you to find out how much cable they need to implement this telecommunication system, given the coordination of the cities and their respective population.

Note that The connections between the cities can be shared. Look at the example for the detailed explanation.

Input Format

A number T is given in the first line and then comes T blocks, each representing a scenario.

Each scenario consists of three lines. The first line indicates the number of cities (N). The second line indicates the coordinates of the N cities. The third line contains the population of each of the cities. The cities needn't be in increasing order in the input.

Output Format

For each scenario of the input, write the length of cable needed in a single line modulo 1, 000, 000, 007.


1  <=  T <=  20
1  <=  N  <= 200,000
Pi  <= 10,000

Border to border length of the country  <=  1,  000, 000, 000

Solution :


                            Solution in C :

In C ++ :

#include <vector>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <deque>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <string>
#include <string.h>
#define pb push_back
#define mp make_pair
#define SS(a,b) scanf("%d%d",&a,&b);
#define S(a) scanf("%d",&a);
#define SSL(a,b) scanf("%lld%lld",&a,&b);
#define SL(a) scanf("%lld",&a);
#define SSS(a,b,c) scanf("%d %d %d",&a,&b,&c);
#define GI ({int t;scanf("%d",&t);t;})
#define GL ({ll t;scanf("%lld",&t);t;})
#define MAXN 500000
#define FOR(i,a,n) for(int i=a;i<n;i++)
#define REP(i,n) FOR(i,0,n)
#define INPUT freopen("input.txt","r",stdin);
#define OUTPUT freopen("output1.txt","w",stdout);
#define disvec(v) { for(int vec_index=0;vec_index<v.size();vec_index++) cout<<v[vec_index]<<" "; cout<<endl;}
using namespace std;
typedef  long long LL;
typedef  long long ll;
LL DistBIT[200100];
LL SumBIT[200100];
LL MOD=1000000007LL;
int maxval=200010;
void init(){
void update_Dist(int idx,LL val){
        idx+=(idx & -idx);              
void update_Sum(int idx,LL val){
		idx+=(idx & -idx);              		
LL query_cnt(int idx){
	LL res=0;
		idx-=(idx & -idx);
	return res;
LL QUERY_cnt(int start,int end){
	if(start>end)return 0;
	return (query_cnt(end)-query_cnt(start-1));
LL query_Dist(int idx){
	LL res=0;
		idx-=(idx & -idx);
	return res;
LL QUERY_Dist(int start, int end){
	if(start>end)return 0;
	return (query_Dist(end)-query_Dist(start-1));
int main(){
	int t=GI;
		int n=GI;
		int total=2;
		LL ans=0;
		for(int i=1;i<n;i++){
			LL xi=input[i].second;
			LL curmapped=m[input[i].second];
			LL Leftcnt=QUERY_cnt(1,curmapped-1);
			LL Rightcnt=QUERY_cnt(curmapped+1,total+2);
			LL LeftDist=QUERY_Dist(1,curmapped-1);
			LL RightDist=QUERY_Dist(curmapped+1,total+2);
			LL Tempans=xi*(Leftcnt-Rightcnt);

    return 0;

In Java :

import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;

public class DirectConnection {
    static final class IO {
        //Standard IO
        static BufferedReader br = new BufferedReader(new InputStreamReader(;
        static StringTokenizer tokenizer = null;

        static int ni() {
            return Integer.parseInt(ns());

        static long nl() {
            return Long.parseLong(ns());

        static double nd() {
            return Double.parseDouble(ns());

        static String ns() {
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                try {
                    tokenizer = new StringTokenizer(br.readLine());
                } catch (IOException e) {
            return tokenizer.nextToken();

        static String nline() {
            tokenizer = null;
            String ret = null;
            try {
                ret = br.readLine();
            } finally {
                return ret;

    static final class City {
        int i;
        int cordinate;
        int cable;

    static class FenwickTree {
        static long MOD = 1000000000 + 7;

        public static void update(long[] arr, int pos, int val)
            int len = arr.length;
            for (; pos < len; pos |= (pos + 1))
                arr[pos] = (arr[pos] + val + MOD) % MOD;

        /** Function to query **/
        public static long query(long[] arr, int pos)
            long sum = 0;
            for (; pos >= 0; pos = (pos & (pos + 1)) - 1)
                sum = (arr[pos] + sum + MOD) % MOD;

            return sum;

    static long f(City[] cityCor) {
        Arrays.sort(cityCor, new Comparator<City>() {
            public int compare(City o1, City o2) {
                return, o2.cordinate);
        long[] iList = new long[cityCor.length];
        long[] cord = new long[cityCor.length];
        long[] cable = new long[cityCor.length];
        for (int i = 0; i < cityCor.length; i++) {
            cityCor[i].i = i;
            FenwickTree.update(cord, i, cityCor[i].cordinate);
            FenwickTree.update(cable, i, cityCor[i].cable);
            FenwickTree.update(iList, i, 1);
        Arrays.sort(cityCor, new Comparator<City>() {
            public int compare(City o1, City o2) {
                return, o1.cable);
        long sum = 0;
        for (City c : cityCor) {
            sum = (sum + g(c, iList, cord)) % FenwickTree.MOD;
            //System.out.println(c.cable + "--" + sum);
            FenwickTree.update(iList, c.i, -1);
            FenwickTree.update(cord, c.i, -1 * c.cordinate);

        return sum;

    private static long g(City c, long[] iList, long[] cord) {
        long MOD = FenwickTree.MOD;
        int i = c.i;
        long l = FenwickTree.query(cord, i);
        long n = FenwickTree.query(cord, cord.length - 1);
        n = (n - l + FenwickTree.MOD) % FenwickTree.MOD;
        //System.out.println(i + "&& " + l + "." + n);
        long li = FenwickTree.query(iList, i);
        long ni = FenwickTree.query(iList, iList.length - 1);
        ni = (ni - li + FenwickTree.MOD) % FenwickTree.MOD;
        //System.out.println(i + "|| " + li + "." + ni);

        long cc = (((c.cordinate * li - l + MOD) % MOD) * c.cable) % MOD;
        long nn = (((n - c.cordinate * ni + MOD) % MOD) * c.cable) % MOD;
        return (cc + nn) % MOD;
    public static void main(String[] argv) {
        int T =;
        for (int t = 0; t < T; t++) {
            int N =;
            City[] citArr = new City[N];

            for (int i = 0; i < N; i++) {
                citArr[i] = new City();
                citArr[i].cordinate =;
            for (int i = 0; i < N; i++) {
                citArr[i].cable =;


In C :

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
struct node {
    long int c, p;
struct node a[200000];
#define MOD(x) ((x) < 0 ? -(x) : (x))
#define MODULO(x) ((x) > 1000000007 ? (x) % 1000000007 : (x))
int cmp(void *a, void *b)
    return ((struct node *)b)->p - ((struct node *)a)->p;
int main() {
    long int n, t, i, j, tot, ans;
    scanf("%ld", &t);
    while (t--) {
        scanf("%ld", &n);
        tot = 0;
        for(i = 0; i < n; i++) {
            scanf("%ld", &a[i].c);
            //tot += c;
        for(i = 0; i < n; i++) {
            scanf("%ld", &a[i].p);
        qsort(a, n, sizeof(a[0]), (__compar_fn_t)cmp);
        ans = 0;
        for(i = 0; i < n; i++) {
            tot = 0;
            for(j = i+1; j < n; j++)
                tot += MOD(a[j].c - a[i].c);
            ans += MODULO(tot) * MODULO(a[i].p);
            ans = MODULO(ans);
        printf("%ld\n", ans);
    return 0;

In Python3 :

class fenpiece:
    __slots__ = ['x','p','px','c']
    def __init__(self,x=0,p=0,px=0,c=0):
        self.x = x
        self.p = p
        self.px = px
        self.c = c
    def __iadd__(self,other):
        self.x += other.x
        self.p += other.p
        self.px += other.px
        self.c += other.c
        return self
    def __radd__(self,other):
        return fenpiece(self.x,self.p,self.px,self.c)
    def __sub__(self,other):
        return fenpiece(self.x-other.x,self.p-other.p,self.px-other.px,self.c-other.c)
def fensum(seq,i):
    sum = 0
    while i:
        sum += seq[i-1]
        i -= i&-i
    return sum

def fensumrange(seq,i,j):
    return fensum(seq,j) - fensum(seq,i)

def fenadd(seq,i,v):
    i += 1
    bound = len(seq) + 1
    while i < bound:
        seq[i-1] += v
        i += i&-i
pBound = 10001
magicmod = 1000000007
fenlist = [fenpiece() for i in range(pBound)]
T = int(input())
for t in range(T):
    total = 0
    N = int(input())
    X = [int(s) for s in input().split()]
    P = [int(s) for s in input().split()]
    cities = sorted(zip(X,P))
    cable = 0
    for x,p in cities:
        underP = fensum(fenlist,p)
        overP = fensumrange(fenlist,p,pBound)
        cable =  (cable + p*(underP.c*x - underP.x) + overP.p*x - overP.px)%magicmod
    for f in fenlist:f.__init__()

View More Similar Problems

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →

Tree: Height of a Binary Tree

The height of a binary tree is the number of edges between the tree's root and its furthest leaf. For example, the following binary tree is of height : image Function Description Complete the getHeight or height function in the editor. It must return the height of a binary tree as an integer. getHeight or height has the following parameter(s): root: a reference to the root of a binary

View Solution →