Permutations to Generate Binary Search Tree - Google Top Interview Questions


Problem Statement :


You are given a list of unique integers nums. 
We can create a binary search tree by taking each number in order and inserting it to an initially null binary search tree. Return the number of permutations of nums from which we can generate the same binary search tree. Mod the result by 10 ** 9 + 7.

You can assume that the binary search tree does no rebalancing.

Constraints

0 ≤ n ≤ 1,000 where n is the length of nums

Example 1

Input

nums = [2, 1, 3]

Output

1

Explanation

The generated tree looks like



   2

  / \

 1   3



And we can also generate this with [2, 3, 1].



Solution :



title-img




                        Solution in C++ :

using ll = long long int;
ll mod = 1e9 + 7;
vector<long long> fact;
int N = 1005;
long long power(long long a, long long b) {
    long long result = 1;
    while (b > 0) {
        if (b % 2) result = (result * a) % mod;
        a = (a * a) % mod;
        b /= 2;
    }
    return result;
}
long long nCr(int n, int r) {
    ll num = fact[n];
    ll den = (fact[r] * fact[n - r]) % mod;
    ll ans = (num * power(den, mod - 2)) % mod;
    return ans;
}
int dfs(vector<int> curr, int l, int r) {
    int n = curr.size();
    if (n <= 1) return 1;
    ll start = curr[0];
    int p = start - l + 1;
    vector<int> left;
    vector<int> right;
    for (int i = 1; i < curr.size(); i++) {
        if (curr[i] < start)
            left.push_back(curr[i]);
        else
            right.push_back(curr[i]);
    }
    ll ans = nCr(left.size() + right.size(), right.size());
    (ans *= dfs(left, l, start - 1)) %= mod;
    (ans *= dfs(right, start + 1, r)) %= mod;

    return ans;
}
int solve(vector<int>& nums) {
    int n = nums.size();
    fact.resize(N + 1, 1);
    for (int i = 1; i <= N; i++) {
        fact[i] = (fact[i - 1] * i) % mod;
    }
    long long ans = dfs(nums, 1, n);
    int res = (ans - 1 + mod) % mod;
    return (int)res;

    return 0;
}
                    


                        Solution in Java :

import java.util.*;

class Solution {
    private class Node {
        int val;
        int size;
        Node left;
        Node right;

        public Node(int val) {
            this.val = val;
            this.size = 1;
            this.left = null;
            this.right = null;
        }
    }

    private static final long mod = 1000000007;

    public int solve(int[] nums) {
        if (nums.length == 0) {
            return 0;
        }
        Node root = null;
        for (int num : nums) {
            root = insertIntoBST(root, num);
        }
        int size = nums.length;
        long[][] DP = new long[size + 1][size + 1];
        for (int j = 0; j <= size; j++) {
            DP[0][j] = 1;
        }
        for (int i = 0; i <= size; i++) {
            DP[i][0] = 1;
        }
        for (int j = 1; j <= size; j++) {
            for (int i = 1; i <= size; i++) {
                DP[i][j] = ((DP[i - 1][j] + DP[i][j - 1]) % mod);
            }
        }
        return (((int) getValidPermutationsCount(root, DP)) - 1);
    }

    private long getValidPermutationsCount(Node root, long[][] DP) {
        if (root == null) {
            return 1L;
        }
        int L = 0, R = 0;
        if (root.left != null) {
            L = root.left.size;
        }
        if (root.right != null) {
            R = root.right.size;
        }
        long TL = getValidPermutationsCount(root.left, DP);
        long TR = getValidPermutationsCount(root.right, DP);
        return ((((TL * DP[L][R]) % mod) * TR) % mod);
    }

    private Node insertIntoBST(Node root, int val) {
        if (root == null) {
            return new Node(val);
        }
        root.size++;
        if (val < root.val) {
            root.left = insertIntoBST(root.left, val);
        } else {
            root.right = insertIntoBST(root.right, val);
        }
        return root;
    }
}
                    


                        Solution in Python : 
                            
class Solution:
    def solve(self, nums):
        Mod = 1000000007

        n = len(nums)
        p = [1] * (n + 1)
        for i in range(n):
            p[i + 1] = p[i] * (i + 1)

        def combi(x, y):
            return p[x] * pow(p[y] * p[x - y] % Mod, Mod - 2, Mod) % Mod

        def go(r):
            if len(r) < 2:
                return 1
            x = r[0]
            a, b = [], []
            for i in range(1, len(r)):
                if r[i] < x:
                    a += (r[i],)
                else:
                    b += (r[i],)
            return go(a) * go(b) % Mod * combi(len(r) - 1, len(a)) % Mod

        return (go(nums) - 1 + Mod) % Mod
                    


View More Similar Problems

Insert a Node at the Tail of a Linked List

You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink

View Solution →

Insert a Node at the head of a Linked List

Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below

View Solution →

Insert a node at a specific position in a linked list

Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e

View Solution →

Delete a Node

Delete the node at a given position in a linked list and return a reference to the head node. The head is at position 0. The list may be empty after you delete the node. In that case, return a null value. Example: list=0->1->2->3 position=2 After removing the node at position 2, list'= 0->1->-3. Function Description: Complete the deleteNode function in the editor below. deleteNo

View Solution →

Print in Reverse

Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing

View Solution →

Reverse a linked list

Given the pointer to the head node of a linked list, change the next pointers of the nodes so that their order is reversed. The head pointer given may be null meaning that the initial list is empty. Example: head references the list 1->2->3->Null. Manipulate the next pointers of each node in place and return head, now referencing the head of the list 3->2->1->Null. Function Descriptio

View Solution →