### Problem Statement :

```This question is designed to help you get a better understanding of basic heap operations.
You will be given queries of  types:

" 1 v " - Add an element  to the heap.
" 2 v " - Delete the element  from the heap.
"3" - Print the minimum of all the elements in the heap.
NOTE: It is guaranteed that the element to be deleted will be there in the heap. Also, at any instant, only distinct elements will be in the heap.

Input Format

The first line contains the number of queries, Q.
Each of the next Q lines contains a single query of any one of the 3 above mentioned types.

Output Format

For each query of type 3, print the minimum value on a single line.```

### Solution :

```                            ```Solution in C :

In C ++ :

#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#include <queue>

int main() {
vector<int> vec;
int q;
cin >> q;
int minval=1000000007;
bool flag=false;
for (int i=0; i<q; i++)
{
int a,v;
cin >> a;
if (a==1)
{
cin >> v;
vec.push_back(v);
minval=min(minval,v);
}
if (a==2)
{
cin >> v;
if (v==minval)
flag=true;
for (int j=0; j<vec.size(); j++)
{
if (vec[j]==v)
{
vec.erase(vec.begin()+j);
}
}
}
if (a==3)
{
if (flag)
{
minval=1000000007;
for (int j=0; j<vec.size();j++)
{
minval=min(minval,vec[j]);
}
flag = false;
}
cout << minval << endl;
}
}
/*
priority_queue<int> pq;
int q;
cin >> q;
for (int i=0; i<q; i++)
{
int a,v;
cin >> a;
if (a==1)
{
cin >> v;
pq.push(-1*v);
}
if (a==2)
{
cin >> v;
pq.pop();
}
if (a==3)
{
cout << pq.top()*-1 << endl;
//pq.pop();
}
}
*/
return 0;
}

In Java :

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {

public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
PriorityQueue<Integer> pq = new PriorityQueue<Integer>();
for (int i=0;i<n;i++) {
int cmd = s.nextInt();
switch (cmd) {
case 1:
int val = s.nextInt();
break;
case 2:
val = s.nextInt();
pq.remove(val);
break;
case 3:
val = pq.peek();
System.out.println(val);
break;
}
}
s.close();
}
}

In C :

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>

int arr;
int curr=-1;

int mindex(int left,int right){
return arr[left]<arr[right]?left:right;
}

int find_index(int y){
for(int i=0;i<=curr;i++)
if(arr[i]==y)
return i;

return -1;
}

void heapifyUp(int index){
int parent=index/2;
if(arr[parent]<arr[index] || (parent==index))
return;
else{
int temp=arr[parent];
arr[parent]=arr[index];
arr[index]=temp;
heapifyUp(parent);
}
return;
}

void heapifyDown(int index){
int left=2*index;
int right=2*index+1;
if(left<=curr && right<=curr){
if(arr[index]<arr[left] && arr[index]<arr[right])
return;
else{
int min_index=mindex(left,right);
int temp=arr[min_index];
arr[min_index]=arr[index];
arr[index]=temp;
heapifyDown(min_index);
}
}
}

void insert(int y){
arr[++curr]=y;
heapifyUp(curr);
/*for(int i=0;i<=curr;i++)
printf("%d\t",arr[i]);
printf("\n");*/
}

void delet(int y){
int index=find_index(y);
//printf("found index:%d\t",index);
if(index!=-1){
arr[index]=arr[curr--];
heapifyDown(index);
}
/*for(int i=0;i<=curr;i++)
printf("%d\t",arr[i]);
printf("\n");
*/
}

int main() {

int n,x,y;
scanf("%d",&n);

while(n--){
scanf("%d",&x);
if(x==1){
scanf("%d",&y);
insert(y);
}
if(x==2){
scanf("%d",&y);
delet(y);
}
if(x==3){
if(curr>=0)
printf("%d\n",arr);
}
}

return 0;
}

In Python3 :

import heapq
m = []
N = int(input())
di = dict()
for i in range(N):
b = input().split()
if b == '1':
b = int(b)
di[b] = 0
heapq.heappush(m,b)
elif b == '2':
b = int(b)
di[b] = 1
else:
while di[m] == 1:
heapq.heappop(m)
print(m)```
```

## Tree: Level Order Traversal

Given a pointer to the root of a binary tree, you need to print the level order traversal of this tree. In level-order traversal, nodes are visited level by level from left to right. Complete the function levelOrder and print the values in a single line separated by a space. For example: 1 \ 2 \ 5 / \ 3 6 \ 4 F

## Binary Search Tree : Insertion

You are given a pointer to the root of a binary search tree and values to be inserted into the tree. Insert the values into their appropriate position in the binary search tree and return the root of the updated binary tree. You just have to complete the function. Input Format You are given a function, Node * insert (Node * root ,int data) { } Constraints No. of nodes in the tree <

## Tree: Huffman Decoding

Huffman coding assigns variable length codewords to fixed length input characters based on their frequencies. More frequent characters are assigned shorter codewords and less frequent characters are assigned longer codewords. All edges along the path to a character contain a code digit. If they are on the left side of the tree, they will be a 0 (zero). If on the right, they'll be a 1 (one). Only t

## Binary Search Tree : Lowest Common Ancestor

You are given pointer to the root of the binary search tree and two values v1 and v2. You need to return the lowest common ancestor (LCA) of v1 and v2 in the binary search tree. In the diagram above, the lowest common ancestor of the nodes 4 and 6 is the node 3. Node 3 is the lowest node which has nodes and as descendants. Function Description Complete the function lca in the editor b

## Swap Nodes [Algo]

A binary tree is a tree which is characterized by one of the following properties: It can be empty (null). It contains a root node only. It contains a root node with a left subtree, a right subtree, or both. These subtrees are also binary trees. In-order traversal is performed as Traverse the left subtree. Visit root. Traverse the right subtree. For this in-order traversal, start from

## Kitty's Calculations on a Tree

Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a