# Pairs

### Problem Statement :

```Given an array of integers and a target value, determine the number of pairs of array elements that have a difference equal to the target value.

Function Description

Complete the pairs function below.

pairs has the following parameter(s):

int k: an integer, the target difference
int arr[n]: an array of integers
Returns

int: the number of pairs that satisfy the criterion
Input Format

The first line contains two space-separated integers n and k, the size of arr and the target value.
The second line contains n space-separated integers of the array arr .

Constraints

2   <=   n   <=   10^5
0   <=   k   <=   10^9
0   <=   arr[ i ]  <=  2^31 -1
each integer arr[ i ]  will be unique

Sample Input

STDIN          Function
-----                 --------
5 2              arr[] size n = 5, k =2
1 5 3 4 2    arr = [1, 5, 3, 4, 2]

Sample Output

3```

### Solution :

```                            ```Solution in C :

In   C++  :

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cstdio>
#include <limits>
#include <vector>
#include <cstdlib>
#include <numeric>
#include <sstream>
#include <iostream>
#include <algorithm>
using namespace std;

int pairs(vector <int> a,int k) {
int ans = 0;
set<long long> s;
for(int i = 0; i < a.size(); i++) s.insert(a[i]);
for(int i = 0; i < a.size(); i++){
long long b = a[i] - k;
if(s.count(b)) ans ++;
}
return ans;
}

/* Tail starts here */
int main() {
int res;

int _a_size,_k;
cin >> _a_size>>_k;
cin.ignore (std::numeric_limits<std::streamsize>::max(), '\n');
vector<int> _a;
int _a_item;
for(int _a_i=0; _a_i<_a_size; _a_i++) {
cin >> _a_item;
_a.push_back(_a_item);
}

res = pairs(_a,_k);
cout << res;

return 0;
}

In  Java  :

import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;

public class Solution {
static int pairs(int[] a,int k) {
Arrays.sort(a);
int N = a.length;
int count = 0;
for (int i = 0; i < N - 1; i++)
{
int j = i + 1;
while((j < N) && (a[j++] - a[i]) < k);
j--;
while((j < N) && (a[j++] - a[i]) == k)
count++;
}

return count;
}

public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int res;

String n = in.nextLine();
String[] n_split = n.split(" ");

int _a_size = Integer.parseInt(n_split);
int _k = Integer.parseInt(n_split);

int[] _a = new int[_a_size];
int _a_item;
String next = in.nextLine();
String[] next_split = next.split(" ");

for(int _a_i = 0; _a_i < _a_size; _a_i++) {
_a_item = Integer.parseInt(next_split[_a_i]);
_a[_a_i] = _a_item;
}

res = pairs(_a,_k);
System.out.println(res);
}
}

In   C :

#include<stdio.h>
int get_num()
{
int num=0;
char c=getchar_unlocked();
while(!(c>='0' && c<='9'))
c=getchar_unlocked();
while(c>='0' && c<='9')
{
num=(num<<3)+(num<<1)+c-'0';
c=getchar_unlocked();
}
return num;
}
void quicksort(int x[],int first,int last)
{
int pivot,j,temp,i;

if(first<last)
{
pivot=first;
i=first;
j=last;

while(i<j){
while(x[i]<=x[pivot]&&i<last)
i++;
while(x[j]>x[pivot])
j--;
if(i<j){
temp=x[i];
x[i]=x[j];
x[j]=temp;
}
}

temp=x[pivot];
x[pivot]=x[j];
x[j]=temp;
quicksort(x,first,j-1);
quicksort(x,j+1,last);

}
}
int main()
{
int n=get_num();
int k=get_num();
int a={0};
int i=0;
while(i<n)
a[i++]=get_num();
quicksort(a,0,n-1);
int temp=0,count=0,flag=0;
for(i=0;i<n-1;i++)
{
int j=i+1;
temp=0;
for(;j<n;j++)
{
if(a[j]-a[i]==k)
count++;
else if(a[j]-a[i]>k)
break;
}
}
printf("%d\n",count);
return 0;
}

In  Python3 :

def main():
N, K = (int(x) for x in sys.stdin.readline().split())
A = [int(x) for x in sys.stdin.readline().split()]
setA = set(A)
count = 0
for x in A:
if (x-K) in setA:
count = count +1
print (count)

if __name__ == '__main__':
import sys
main()```
```

## The Strange Function

One of the most important skills a programmer needs to learn early on is the ability to pose a problem in an abstract way. This skill is important not just for researchers but also in applied fields like software engineering and web development. You are able to solve most of a problem, except for one last subproblem, which you have posed in an abstract way as follows: Given an array consisting

## Self-Driving Bus

Treeland is a country with n cities and n - 1 roads. There is exactly one path between any two cities. The ruler of Treeland wants to implement a self-driving bus system and asks tree-loving Alex to plan the bus routes. Alex decides that each route must contain a subset of connected cities; a subset of cities is connected if the following two conditions are true: There is a path between ever

## Unique Colors

You are given an unrooted tree of n nodes numbered from 1 to n . Each node i has a color, ci. Let d( i , j ) be the number of different colors in the path between node i and node j. For each node i, calculate the value of sum, defined as follows: Your task is to print the value of sumi for each node 1 <= i <= n. Input Format The first line contains a single integer, n, denoti

## Fibonacci Numbers Tree

Shashank loves trees and math. He has a rooted tree, T , consisting of N nodes uniquely labeled with integers in the inclusive range [1 , N ]. The node labeled as 1 is the root node of tree , and each node in is associated with some positive integer value (all values are initially ). Let's define Fk as the Kth Fibonacci number. Shashank wants to perform 22 types of operations over his tree, T

## Pair Sums

Given an array, we define its value to be the value obtained by following these instructions: Write down all pairs of numbers from this array. Compute the product of each pair. Find the sum of all the products. For example, for a given array, for a given array [7,2 ,-1 ,2 ] Note that ( 7 , 2 ) is listed twice, one for each occurrence of 2. Given an array of integers, find the largest v

## Lazy White Falcon

White Falcon just solved the data structure problem below using heavy-light decomposition. Can you help her find a new solution that doesn't require implementing any fancy techniques? There are 2 types of query operations that can be performed on a tree: 1 u x: Assign x as the value of node u. 2 u v: Print the sum of the node values in the unique path from node u to node v. Given a tree wi