Modify The Sequence


Problem Statement :


You are given a sequence of integers a1,a2,a3.....an. You are free to replace any integer with any other positive integer. How many integers must be replaced to make the resulting sequence strictly increasing?

Input Format
The first line of the test case contains an integer N - the number of entries in the sequence.
The next line contains N space separated integers where the ith integer is ai.

Output Format
Output the minimal number of integers that should be replaced to make the sequence strictly increasing.

Constraints

0 < N <= 10^6
0 <ai  <= 10^9



Solution :



title-img


                            Solution in C :

In C++ :





#include <iostream>
#include <ctime>
#include <fstream>
#include <cmath>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <algorithm>
#include <iomanip>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <complex>
#include <utility>
#include <cctype>
#include <list>

using namespace std;

#define FORALL(i,a,b) for(int i=(a);i<=(b);++i)
#define FOR(i,n) for(int i=0;i<(n);++i)
#define FORB(i,a,b) for(int i=(a);i>=(b);--i)

typedef long long ll;
typedef long double ld;
typedef complex<ld> vec;

typedef pair<int,int> pii;
typedef map<int,int> mii;

#define pb push_back
#define mp make_pair

#define INF 2000000001
#define MAXN 1000100
int A[MAXN];
int dp[MAXN];

int main() {
	int N;
	cin >> N;
	A[0] = 1;
	FORALL(i,1,N) scanf("%d",A+i);
	FORALL(i,1,N) A[i] -= i;
	FORALL(i,0,N) dp[i] = INF;
	//FORALL(i,1,N) cout << A[i] << " "; cout << endl;
	dp[0] = 0;
	FORALL(i,1,N) {
		if (A[i] < 0) continue;
		int idx = upper_bound(dp,dp+N,A[i]) - dp - 1;
		//cout << i <<  " " << A[i] << " " << idx << endl;
		assert(idx >= 0);
		dp[idx+1] = A[i];
	}
	/*
	FOR(i,N) cout << A[i] << endl;
	*/
	int ans = 0;
	FORALL(i,0,N) if (dp[i] < INF) ans = max(ans,i);
	/*
	FORALL(i,0,N) {
		cout << i << " " << dp[i] << endl;
	}*/
	
	cout << N-ans << endl;
}








In Java :





import java.io.*;
import java.util.*;

public class Solution {

	BufferedReader br;
	PrintWriter out;
	StringTokenizer st;
	boolean eof;

	void solve() throws IOException {
		int n = nextInt();
		int[] a = new int[n];
		for (int i = 0; i < n; i++) {
			a[i] = nextInt() - i;
		}
		
		int[] d = new int[n + 1];
		Arrays.fill(d, Integer.MAX_VALUE);
		d[0] = Integer.MIN_VALUE;
		
		int ans = 0;
		for (int i = 0; i < n; i++) {
			int x = a[i];
			if (x <= 0)
				continue;
			int l = 0;
			int r = ans + 1;
			while (r - l > 1) {
				int mid = (l + r) >> 1;
				if (d[mid] > x) {
					r = mid;
				} else {
					l = mid;
				}
			}
			if (r == ans + 1) {
				ans++;
			}
			d[r] = x;
		}
		
		out.println(n - ans);
	}

	Solution() throws IOException {
		br = new BufferedReader(new InputStreamReader(System.in));
		out = new PrintWriter(System.out);
		solve();
		out.close();
	}

	public static void main(String[] args) throws IOException {
		new Solution();
	}

	String nextToken() {
		while (st == null || !st.hasMoreTokens()) {
			try {
				st = new StringTokenizer(br.readLine());
			} catch (Exception e) {
				eof = true;
				return null;
			}
		}
		return st.nextToken();
	}

	String nextString() {
		try {
			return br.readLine();
		} catch (IOException e) {
			eof = true;
			return null;
		}
	}

	int nextInt() throws IOException {
		return Integer.parseInt(nextToken());
	}

	long nextLong() throws IOException {
		return Long.parseLong(nextToken());
	}

	double nextDouble() throws IOException {
		return Double.parseDouble(nextToken());
	}
}








In C :





#include <stdio.h>
#include <string.h>
//using namespace std;
const int inf = 2000000000;
int a[1000005];
int longest;

void find(int x) { 
int left = 1, right = longest;
    while (left <= right) {

        int mid = (left + right) >> 1;
        if (a[mid] <= x) {
            left = mid + 1;
        }
        else {
            right = mid - 1;
        }
    }
    a[++right] = x;
    if (right > longest) {
        longest =right;
    }
}

int main() {
int n;
    scanf("%d",&n);
    for (int i = 0; i <= n; ++i) {
        a[i] = inf;
    }
    longest = 0; 
    for (int i = 1; i <= n; ++i) {      
        int x;  
        scanf("%d",&x);
        if ((x -= i) >= 0) {
            find(x);
        }
    }
    printf("%d\n", n - longest);
    return 0;


}








In Python3 :






import bisect

def parse(seq):
    for i in range(len(seq)):
        seq[i] -= i

def patience_sort(array):
    piles = [array[0]]
    for x in range(1, len(array)):
        i = bisect.bisect_right(piles, array[x])
        if i != len(piles):
            piles[i] = array[x]
        else:
            piles.append(array[x])
    return len(piles)

def main():
    n = int(input())
    array = [i for i in range(-99, 1)] + list(map(int, input().split()))
    parse(array)
    #print(array)
    print(n - patience_sort(array) + 100)

if __name__ == '__main__':
    main()
                        








View More Similar Problems

Square-Ten Tree

The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the

View Solution →

Balanced Forest

Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a

View Solution →

Jenny's Subtrees

Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .

View Solution →

Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →

Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →

Self Balancing Tree

An AVL tree (Georgy Adelson-Velsky and Landis' tree, named after the inventors) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. We define balance factor for each node as : balanceFactor = height(left subtree) - height(righ

View Solution →