Merge New Interval - Amazon Top Interview Questions
Problem Statement :
Given a list of intervals that are: Non-overlapping Sorted in increasing order by end times Merge a new interval target into the list so that the above two properties are met. Constraints n ≤ 100,000 where n is the length of intervals Example 1 Input intervals = [ [1, 10], [20, 30], [70, 100] ] target = [5, 25] Output [ [1, 30], [70, 100] ] Explanation [5, 25] is merged with the first two intervals [1, 10], [20, 30]. Example 2 Input intervals = [ [1, 2], [3, 5], [7, 10] ] target = [5, 7] Output [ [1, 2], [3, 10] ] Explanation The [5, 7] is merged with [3, 5] and [7, 10].
Solution :
Solution in C++ :
vector<vector<int>> solve(vector<vector<int>>& intervals, vector<int>& target) {
int l = target[0];
int r = target[1];
vector<vector<int>> ans;
bool flag1 = false;
for (int i = 0; i < intervals.size(); i++) {
if ((intervals[i][0] > r) || (intervals[i][1] < l)) {
if ((r < intervals[i][0]) && (!flag1)) {
ans.push_back({l, r});
flag1 = true;
}
ans.push_back(intervals[i]);
} else {
l = min(l, intervals[i][0]);
r = max(r, intervals[i][1]);
}
}
if (!flag1) ans.push_back({l, r});
return ans;
}
Solution in Java :
import java.util.*;
class Solution {
public int[][] solve(int[][] intervals, int[] target) {
LinkedList<int[]> res = new LinkedList();
int i = 0, n = intervals.length;
// first add all the intervals which are less than target
while (i < n && intervals[i][1] < target[0]) {
res.add(intervals[i]);
i++;
}
// now merge the intervals with target
while (i < n && intervals[i][0] <= target[1]) {
target[0] = Math.min(intervals[i][0], target[0]);
target[1] = Math.max(intervals[i][1], target[1]);
i++;
}
// add target interval , once it is merged with valid one
res.add(target);
// add remaining
while (i < n) {
res.add(intervals[i]);
i++;
}
return res.toArray(new int[res.size()][]);
}
}
Solution in Python :
class Solution:
def solve(self, intervals, target):
left, right = [], []
s, e = target
for start, end in intervals:
if end < s:
left.append([start, end])
elif start > e:
right.append([start, end])
else:
s, e = min(s, start), max(e, end)
return left + [[s, e]] + right
View More Similar Problems
Left Rotation
A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d
View Solution →Sparse Arrays
There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun
View Solution →Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →Print the Elements of a Linked List
This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode
View Solution →Insert a Node at the Tail of a Linked List
You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink
View Solution →Insert a Node at the head of a Linked List
Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below
View Solution →