Reverse a doubly linked list


Problem Statement :


This challenge is part of a tutorial track by MyCodeSchool

Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list.

Note: The head node might be NULL to indicate that the list is empty.

Function Description

Complete the reverse function in the editor below.

reverse has the following parameter(s):

DoublyLinkedListNode head: a reference to the head of a DoublyLinkedList
Returns
- DoublyLinkedListNode: a reference to the head of the reversed list

Input Format

The first line contains an integer t, the number of test cases.

Each test case is of the following format:

The first line contains an integer n, the number of elements in the linked list.
The next n lines contain an integer each denoting an element of the linked list.



Solution :



title-img


                            Solution in C :

In C++ :



/*
   Reverse a doubly linked list, input list may also be empty
   Node is defined as
   struct Node
   {
     int data;
     Node *next;
     Node *prev
   }
*/
Node* Reverse(Node* head)
{
    // Complete this function
    // Do not write the main method. 
    
    Node *temp = NULL;  
     Node *current = head;
      
     /* swap next and prev for all nodes of 
       doubly linked list */
     while (current !=  NULL)
     {
       temp = current->prev;
       current->prev = current->next;
       current->next = temp;              
       current = current->prev;
     }      
      
     /* Before changing head, check for the cases like empty 
        list and list with only one node */
     if(temp != NULL )
        head = temp->prev;
    
    return head;
}







In Java :




/*
  Insert Node at the end of a linked list 
  head pointer input could be NULL as well for empty list
  Node is defined as 
  class Node {
     int data;
     Node next;
     Node prev;
  }
*/

Node Reverse(Node head) {
    
    if(head==null)
        return null;
    
    if(head.next==null)
        return head;
    
    Node temp=head;
    Node next=temp.next;
    while(next!=null)
        {
          
           temp.next=temp.prev;
        temp.prev=next;
        temp=next;
        next=next.next;
        
    }
    
    temp.next=temp.prev;
    temp.prev=null;
    return temp;

}







In python3 :



def Reverse(head):
	if head == None or head.next == None:
		return head

	prev = head
	curr = head.next

	while curr.next != None:
		prev, curr = curr, curr.next

	head = curr

	while prev != None:
		curr.prev = curr.next
		curr.next = prev
		prev.next = prev.prev
		prev.prev = curr
		prev, curr = prev.next, prev

	return head






In C :



// Complete the reverse function below.

/*
 * For your reference:
 *
 * DoublyLinkedListNode {
 *     int data;
 *     DoublyLinkedListNode* next;
 *     DoublyLinkedListNode* prev;
 * };
 *
 */
DoublyLinkedListNode* reverse(DoublyLinkedListNode* head) {
struct DoublyLinkedListNode *prev,*curr,*next;
    curr=head;
    prev=NULL;
    while(curr)
    {
        next=curr->next;
        curr->next=prev;
        curr->prev=next;
        if(next==NULL)break;
        prev=curr;curr=next;
    }
    curr->prev=NULL;return curr;

}
                        








View More Similar Problems

Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

View Solution →

Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

View Solution →

Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

View Solution →

Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's

View Solution →

Tree: Postorder Traversal

Complete the postorder function in the editor below. It received 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's postorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the postorder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the

View Solution →

Tree: Inorder Traversal

In this challenge, you are required to implement inorder traversal of a tree. Complete the inorder function in your editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's inorder traversal as a single line of space-separated values. Input Format Our hidden tester code passes the root node of a binary tree to your $inOrder* func

View Solution →