# Maximum Xor

### Problem Statement :

```You are given an array arr of n elements. A list of integers, queries  is given as an input, find the maximum value of queries[ j ] each arr[ i ] for all  0 <=  i  < n, where  represents xor of two elements.

Note that there are multiple test cases in one input file.

Function Description

Complete the maxXor function in the editor below. It must return an array of integers, each representing the maximum xor value for each element queries[ j ] against all elements of arr.

maxXor has the following parameter(s):

arr: an array of integers
queries: an array of integers to query

Input Format

The first line contains an integer n, the size of the array arr.

The second line contains n space-separated integers, arr[ i ] from 0  <= i  < n.

The third line contain m, the size of the array queries.

Each of the next m lines contains an integer queries[ j ] where 0  <= j  < m.

Constraints

1  <=   n, m  <=  10^5
0   <=  arr[ i ] , queries[ j ]  <= 10^9

Output Format

The output should contain m lines with each line representing output for the corresponding input of the testcase.```

### Solution :

```                        ```Solution in C++ :

In   C++  :

#include <bits/stdc++.h>
using namespace std;

int p;
struct node
{
int val;
node *child;
};

void insert(node *trie, int x, int ind)
{
if(ind < 0) {
return;
}
int k=(x>>ind)&1;

if(!trie->child[k]) {
trie->child[k]=new node;
}
insert(trie->child[k], x, ind-1);
}

void find(node *trie, int x, int ind)
{
if(ind<0) {
return;
}

int k=(x>>ind)&1;
k^=1;

if(!trie->child[k]) {
k^=1;
}
p=p<<1|k;
find(trie->child[k], x, ind-1);
}

int main()
{
int n,i,x;
cin>>n;

int a[n];
for(i=0;i<n;++i) {
cin>>a[i];
}

node *trie = new node;
for(i=0;i<n;++i) {
// max 32 bits
insert(trie,a[i],31);
}

int t;
cin>>t;
while(t--) {
cin>>x;
p=0;
find(trie,x,31);
cout<<(p^x)<<endl;
}

return 0;
}```
```

```                        ```Solution in Java :

In   Java   :

static final int INT_SIZE = 32;

// A Trie Node
static class TrieNode
{
int value;  // Only used in leaf nodes
TrieNode[] arr =  new TrieNode;
public TrieNode() {
value = 0;
arr = null;
arr = null;
}

public String toString(){
return "{ value: "+this.value+" "+ arr.toString()+"}";
}
}
static TrieNode root;

static void insert(int pre_xor)
{
TrieNode temp = root;

for (int i=INT_SIZE-1; i>=0; i--)
{
int val = (pre_xor & (1<<i)) >=1 ? 1 : 0;

if (temp.arr[val] == null)
temp.arr[val] = new TrieNode();

temp = temp.arr[val];
}
temp.value = pre_xor;
}

static int query(int pre_xor)
{
TrieNode temp = root;
for (int i=INT_SIZE-1; i>=0; i--)
{
int val = (pre_xor & (1<<i)) >= 1 ? 1 : 0;

if (temp.arr[val] != null)
temp = temp.arr[val];

else if (temp.arr[1-val] != null)
temp = temp.arr[1-val];
}
return (~pre_xor)^(temp.value);
}
// Complete the maxXor function below.
static int[] maxXor(int[] arr, int[] queries) {
int[] result = new int[queries.length];

root = new TrieNode();
insert(0);
int pre_xor =0;
int max = Integer.MIN_VALUE;
for (int i=0; i<arr.length; i++)
{
insert(arr[i]);
}

for(int j=0; j<queries.length;j++){
pre_xor = ~queries[j];
//max= Math.max(max, query(pre_xor));
result[j]=query(pre_xor);
}
return result;
}```
```

```                        ```Solution in Python :

In   Python3  :

def maxXor(arr, queries):
ans = []
trie = {}
k = len(bin(max(arr+queries))) - 2
for number in ['{:b}'.format(x).zfill(k) for x in arr]:
node = trie
for char in number:
node = node.setdefault(char, {})
for n in queries:
node = trie
s = ''
for char in'{:b}'.format(n).zfill(k) :
tmp = str(int(char) ^ 1)
tmp = tmp if tmp in node else char
s += tmp
node = node[tmp]
ans.append(int(s, 2) ^ n)
return ans```
```

## Delete duplicate-value nodes from a sorted linked list

This challenge is part of a tutorial track by MyCodeSchool You are given the pointer to the head node of a sorted linked list, where the data in the nodes is in ascending order. Delete nodes and return a sorted list with each distinct value in the original list. The given head pointer may be null indicating that the list is empty. Example head refers to the first node in the list 1 -> 2 -

## Cycle Detection

A linked list is said to contain a cycle if any node is visited more than once while traversing the list. Given a pointer to the head of a linked list, determine if it contains a cycle. If it does, return 1. Otherwise, return 0. Example head refers 1 -> 2 -> 3 -> NUL The numbers shown are the node numbers, not their data values. There is no cycle in this list so return 0. head refer

## Find Merge Point of Two Lists

This challenge is part of a tutorial track by MyCodeSchool Given pointers to the head nodes of 2 linked lists that merge together at some point, find the node where the two lists merge. The merge point is where both lists point to the same node, i.e. they reference the same memory location. It is guaranteed that the two head nodes will be different, and neither will be NULL. If the lists share

## Inserting a Node Into a Sorted Doubly Linked List

Given a reference to the head of a doubly-linked list and an integer ,data , create a new DoublyLinkedListNode object having data value data and insert it at the proper location to maintain the sort. Example head refers to the list 1 <-> 2 <-> 4 - > NULL. data = 3 Return a reference to the new list: 1 <-> 2 <-> 4 - > NULL , Function Description Complete the sortedInsert function

## Reverse a doubly linked list

This challenge is part of a tutorial track by MyCodeSchool Given the pointer to the head node of a doubly linked list, reverse the order of the nodes in place. That is, change the next and prev pointers of the nodes so that the direction of the list is reversed. Return a reference to the head node of the reversed list. Note: The head node might be NULL to indicate that the list is empty.

## Tree: Preorder Traversal

Complete the preorder function in the editor below, which has 1 parameter: a pointer to the root of a binary tree. It must print the values in the tree's preorder traversal as a single line of space-separated values. Input Format Our test code passes the root node of a binary tree to the preOrder function. Constraints 1 <= Nodes in the tree <= 500 Output Format Print the tree's