Find the Running Median
Problem Statement :
The median of a set of integers is the midpoint value of the data set for which an equal number of integers are less than and greater than the value. To find the median, you must first sort your set of integers in non-decreasing order, then: If your set contains an odd number of elements, the median is the middle element of the sorted sample. In the sorted set { 1, 2, 3 } , 2 is the median. If your set contains an even number of elements, the median is the average of the two middle elements of the sorted sample. In the sorted set { 1, 2, 3 , 4}, 2 + 3 /2, 2.5 is the median. Given an input stream of n integers, you must perform the following task for each ith integer: Add the ith integer to a running list of integers. Find the median of the updated list (i.e., for the first element through the ith element). Print the list's updated median on a new line. The printed value must be a double-precision number scaled to 1 decimal place (i.e., 12.3 format). Input Format The first line contains a single integer, n, denoting the number of integers in the data stream. Each line i of the n subsequent lines contains an integer, ai, to be added to your list. Constraints 1 < = n <= 10 ^5 0 < = ai <= 10 ^5 Output Format After each new integer is added to the list, print the list's updated median on a new line as a single double-precision number scaled to 1 decimal place (i.e., 12.3 format).
Solution :
Solution in C :
In C ++ :
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
int main() {
size_t n;
cin >> n;
vector<size_t> numbers;
for (size_t i = 0; i < n; ++i){
size_t number;
cin >> number;
// keep numbers sorted
numbers.insert(lower_bound(numbers.begin(), numbers.end(), number), number);
double median;
if (i % 2 == 0){ // odd number of elements
median = numbers[i / 2];
}
else{ // even
median = (double(numbers[i / 2]) + numbers[i / 2 + 1]) / 2;
}
cout << fixed << setprecision(1) << median << "\n";
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static class MinComparator implements Comparator<Integer> {
@Override
public int compare(Integer i1, Integer i2) {
if (i1 < i2) {
return -1;
} else if (i1 > i2) {
return 1;
} else {
return 0;
}
}
}
public static class MaxComparator implements Comparator<Integer> {
@Override
public int compare(Integer i1, Integer i2) {
if (i1 > i2) {
return -1;
} else if (i1 < i2) {
return 1;
} else {
return 0;
}
}
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
Queue<Integer> minHeap = new PriorityQueue<>(n/2+1, new MinComparator());
Queue<Integer> maxHeap = new PriorityQueue<>(n/2+1, new MaxComparator());
for (int i = 0; i < n; i++) {
int num = in.nextInt();
if (!maxHeap.isEmpty() && num > maxHeap.peek()) {
minHeap.offer(num);
} else {
maxHeap.offer(num);
}
if (minHeap.size() > maxHeap.size() + 1) {
maxHeap.offer(minHeap.poll());
} else if (maxHeap.size() > minHeap.size() + 1) {
minHeap.offer(maxHeap.poll());
}
double median = 0.0;
if (minHeap.size() == maxHeap.size()) {
median = 0.5 * (minHeap.peek() + maxHeap.peek());
} else {
median = (minHeap.size() > maxHeap.size()) ? minHeap.peek() : maxHeap.peek();
}
System.out.println(String.format("%1.1f", median));
}
}
}
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
int main() {
int a[100000], n, i, j, t, k, start, end, mid;
scanf("%d", &n);
for(i=0; i < n; i++) {
scanf("%d", &t);
start = 0;
end = i;
mid = (end-start)/2;
while (start != mid && mid != end) {
if (a[mid] > t)
end = mid;
else if (a[mid] <= t)
start = mid;
mid = start + (end - start)/2;
}
for(j=mid; j < i; j++) {
if (a[j] > t) {
break;
}
}
//memcpy(&a[j+1], &a[j], (i-j)*sizeof(int));
for(k = i; k >= (j+1); k--)
a[k] = a[k-1];
a[j] = t;
//for(j = 0; j <= i; j++)
// printf("%d ", a[j]);
//printf("\n");
if(i%2 == 0) {
printf("%.1f\n", (float)a[i/2]);
} else {
printf("%.1f\n", (float)(a[i/2] + a[(i+1)/2])/2.0);
}
}
return 0;
}
In Python3 :
import heapq as hq
minheap = []
maxheap = []
N = int(input())
for i in range(0, N):
x = int(input())
if i % 2 == 0:
hq.heappush(maxheap, -1*x)
if len(minheap) == 0:
x = -1*maxheap[0]
print(float(x))
continue
elif -1*maxheap[0] > minheap[0]:
toMin = -1*hq.heappop(maxheap)
toMax = hq.heappop(minheap)
hq.heappush(minheap, toMin)
hq.heappush(maxheap, -1*toMax)
x = -1*maxheap[0]
print(float(x))
else:
toMin = -1*hq.heappushpop(maxheap, -1*x)
hq.heappush(minheap, toMin)
x = (-1*maxheap[0]+minheap[0])/2.0
print(x)
View More Similar Problems
Array-DS
An array is a type of data structure that stores elements of the same type in a contiguous block of memory. In an array, A, of size N, each memory location has some unique index, i (where 0<=i<N), that can be referenced as A[i] or Ai. Reverse an array of integers. Note: If you've already solved our C++ domain's Arrays Introduction challenge, you may want to skip this. Example: A=[1,2,3
View Solution →2D Array-DS
Given a 6*6 2D Array, arr: 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 An hourglass in A is a subset of values with indices falling in this pattern in arr's graphical representation: a b c d e f g There are 16 hourglasses in arr. An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in arr, then print t
View Solution →Dynamic Array
Create a list, seqList, of n empty sequences, where each sequence is indexed from 0 to n-1. The elements within each of the n sequences also use 0-indexing. Create an integer, lastAnswer, and initialize it to 0. There are 2 types of queries that can be performed on the list of sequences: 1. Query: 1 x y a. Find the sequence, seq, at index ((x xor lastAnswer)%n) in seqList.
View Solution →Left Rotation
A left rotation operation on an array of size n shifts each of the array's elements 1 unit to the left. Given an integer, d, rotate the array that many steps left and return the result. Example: d=2 arr=[1,2,3,4,5] After 2 rotations, arr'=[3,4,5,1,2]. Function Description: Complete the rotateLeft function in the editor below. rotateLeft has the following parameters: 1. int d
View Solution →Sparse Arrays
There is a collection of input strings and a collection of query strings. For each query string, determine how many times it occurs in the list of input strings. Return an array of the results. Example: strings=['ab', 'ab', 'abc'] queries=['ab', 'abc', 'bc'] There are instances of 'ab', 1 of 'abc' and 0 of 'bc'. For each query, add an element to the return array, results=[2,1,0]. Fun
View Solution →Array Manipulation
Starting with a 1-indexed array of zeros and a list of operations, for each operation add a value to each of the array element between two given indices, inclusive. Once all operations have been performed, return the maximum value in the array. Example: n=10 queries=[[1,5,3], [4,8,7], [6,9,1]] Queries are interpreted as follows: a b k 1 5 3 4 8 7 6 9 1 Add the valu
View Solution →