Incrementable Stack - Microsoft Top Interview Questions

Problem Statement :

Implement a stack with the following methods:

IncrementableStack() constructs a new instance of an incrementable stack

append(int val) appends val to the stack

pop() pops and returns the last element in the stack

increment(int inc, inc count) increments the value of bottom count elements by inc

Each method should be done in \mathcal{O}(1)O(1) time. You can assume that for pop, the stack is 
non-empty when it is called.


n ≤ 100,000 where n is the number of calls to append, pop, and increment`.

Example 1


methods = ["constructor", "append", "append", "increment", "pop", "pop"]

arguments = [[], [1], [2], [5, 1], [], []]`


[None, None, None, None, 2, 6]

Solution :


                        Solution in C++ :

class IncrementableStack {
    // {value, increment}
    // all the elements below this element will get affected by the increment value
    vector<pair<int, int>> s;
    IncrementableStack() {

    void append(int val) {
        s.push_back({val, 0});

    int pop() {
        int val = s.back().first;
        int inc = s.back().second;
        int ret = val + inc;
        if (s.size() > 1) s[s.size() - 2].second += inc;
        return ret;

    void increment(int inc, int count) {
        if (s.size() && count) {
            int index = min(count - 1, (int)s.size() - 1);
            s[index].second += inc;

                        Solution in Java :

import java.util.*;

class IncrementableStack {
    // first num is val, second is increment
    LinkedList<int[]> stack = new LinkedList<>();

    public void append(int val) {
        stack.add(new int[] {val, 0});

    public int pop() {
        // Get top of stack
        int[] pair = stack.getLast();
        int val = pair[0], incr = pair[1];

        // Update next pair in stack
        int len = stack.size();
        if (len > 1) {
            stack.get(len - 2)[1] += incr;

        // Remove top of stack

        return val + incr;

    public void increment(int inc, int count) {
        // Increase increment of desired position count
        if (!stack.isEmpty() && count > 0) {
            int index = Math.min(stack.size() - 1, count - 1);
            stack.get(index)[1] += inc;

                        Solution in Python : 
class IncrementableStack:
    def __init__(self):
        self.stack = []
        self.incs = []

    def append(self, val):

    def pop(self):
        inc = self.incs.pop()
        if self.incs:
            self.incs[-1] += inc
        return self.stack.pop() + inc

    def increment(self, inc, count):
        if self.incs and count > 0:
            if count <= len(self.incs):
                self.incs[count - 1] += inc
                self.incs[-1] += inc

View More Similar Problems


We're going to make our own Contacts application! The application must perform two types of operations: 1 . add name, where name is a string denoting a contact name. This must store name as a new contact in the application. find partial, where partial is a string denoting a partial name to search the application for. It must count the number of contacts starting partial with and print the co

View Solution →

No Prefix Set

There is a given list of strings where each string contains only lowercase letters from a - j, inclusive. The set of strings is said to be a GOOD SET if no string is a prefix of another string. In this case, print GOOD SET. Otherwise, print BAD SET on the first line followed by the string being checked. Note If two strings are identical, they are prefixes of each other. Function Descriptio

View Solution →

Cube Summation

You are given a 3-D Matrix in which each block contains 0 initially. The first block is defined by the coordinate (1,1,1) and the last block is defined by the coordinate (N,N,N). There are two types of queries. UPDATE x y z W updates the value of block (x,y,z) to W. QUERY x1 y1 z1 x2 y2 z2 calculates the sum of the value of blocks whose x coordinate is between x1 and x2 (inclusive), y coor

View Solution →

Direct Connections

Enter-View ( EV ) is a linear, street-like country. By linear, we mean all the cities of the country are placed on a single straight line - the x -axis. Thus every city's position can be defined by a single coordinate, xi, the distance from the left borderline of the country. You can treat all cities as single points. Unfortunately, the dictator of telecommunication of EV (Mr. S. Treat Jr.) do

View Solution →

Subsequence Weighting

A subsequence of a sequence is a sequence which is obtained by deleting zero or more elements from the sequence. You are given a sequence A in which every element is a pair of integers i.e A = [(a1, w1), (a2, w2),..., (aN, wN)]. For a subseqence B = [(b1, v1), (b2, v2), ...., (bM, vM)] of the given sequence : We call it increasing if for every i (1 <= i < M ) , bi < bi+1. Weight(B) =

View Solution →

Kindergarten Adventures

Meera teaches a class of n students, and every day in her classroom is an adventure. Today is drawing day! The students are sitting around a round table, and they are numbered from 1 to n in the clockwise direction. This means that the students are numbered 1, 2, 3, . . . , n-1, n, and students 1 and n are sitting next to each other. After letting the students draw for a certain period of ti

View Solution →