Functions C++
Problem Statement :
Functions are a bunch of statements glued together. A function is provided with zero or more arguments, and it executes the statements on it. Based on the return type, it either returns nothing (void) or something. The syntax for a function is return_type function_name(arg_type_1 arg_1, arg_type_2 arg_2, ...) { ... ... ... [if return_type is non void] return something of type `return_type`; } For example, a function to return the sum of four parameters can be written as int sum_of_four(int a, int b, int c, int d) { int sum = 0; sum += a; sum += b; sum += c; sum += d; return sum; } Write a function int max_of_four(int a, int b, int c, int d) which returns the maximum of the four arguments it receives. += : Add and assignment operator. It adds the right operand to the left operand and assigns the result to the left operand. a += b is equivalent to a = a + b; Input Format Input will contain four integers -a, b, c, d, one per line. Output Format Return the greatest of the four integers. PS: I/O will be automatically handled.
Solution :
Solution in C :
#include <iostream>
#include <cstdio>
using namespace std;
int max_of_four(int a, int b, int c, int d){
return max(max(a, b), max(c,d));
}
int main() {
int a, b, c, d;
scanf("%d %d %d %d", &a, &b, &c, &d);
int ans = max_of_four(a, b, c, d);
printf("%d", ans);
return 0;
}
View More Similar Problems
Kitty's Calculations on a Tree
Kitty has a tree, T , consisting of n nodes where each node is uniquely labeled from 1 to n . Her friend Alex gave her q sets, where each set contains k distinct nodes. Kitty needs to calculate the following expression on each set: where: { u ,v } denotes an unordered pair of nodes belonging to the set. dist(u , v) denotes the number of edges on the unique (shortest) path between nodes a
View Solution →Is This a Binary Search Tree?
For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a
View Solution →Square-Ten Tree
The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the
View Solution →Balanced Forest
Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a
View Solution →Jenny's Subtrees
Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .
View Solution →Tree Coordinates
We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For
View Solution →