**Compare the Triplets**

### Problem Statement :

Alice and Bob each created one problem for HackerRank. A reviewer rates the two challenges, awarding points on a scale from 1 to 100 for three categories: problem clarity, originality, and difficulty. The rating for Alice's challenge is the triplet a = (a[0], a[1], a[2]), and the rating for Bob's challenge is the triplet b = (b[0], b[1], b[2]). The task is to find their comparison points by comparing a[0] with b[0], a[1] with b[1], and a[2] with b[2]. If a[i] > b[i], then Alice is awarded 1 point. If a[i] < b[i], then Bob is awarded 1 point. If a[i] = b[i], then neither person receives a point. Comparison points is the total points a person earned. Given a and b, determine their respective comparison points. Example a = [1, 2, 3] b = [3, 2, 1] For elements *0*, Bob is awarded a point because a[0] . For the equal elements a[1] and b[1], no points are earned. Finally, for elements 2, a[2] > b[2] so Alice receives a point. The return array is [1, 1] with Alice's score first and Bob's second. Function Description Complete the function compareTriplets in the editor below. compareTriplets has the following parameter(s): int a[3]: Alice's challenge rating int b[3]: Bob's challenge rating Return int[2]: Alice's score is in the first position, and Bob's score is in the second. Input Format The first line contains 3 space-separated integers, a[0], a[1], and a[2], the respective values in triplet a. The second line contains 3 space-separated integers, b[0], b[1], and b[2], the respective values in triplet b. Constraints 1 ≤ a[i] ≤ 100 1 ≤ b[i] ≤ 100

### Solution :

` ````
Solution in C :
In C++ :
#include <bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define REP(i, n) for (int i = 0; i < (int)(n); ++i)
typedef long long LL;
typedef pair<int, int> PII;
int a[3], b[3];
int main() {
REP(i, 3) scanf("%d", a + i);
REP(i, 3) scanf("%d", b + i);
int x = 0, y = 0;
REP(i, 3) if (a[i] > b[i]) {
++x;
} else if (a[i] < b[i]) {
++y;
}
printf("%d %d\n", x, y);
return 0;
}
In C :
int* compareTriplets(int a_count, int* a, int b_count, int* b, int* result_count) {
int Alice_point = 0, Bob_point = 0;
for(int i = 0; i<a_count; i++)
{
if(a[i]==b[i])
{
}
if(a[i]>b[i])
{
Alice_point += 1;
}
if(a[i]<b[i])
{
Bob_point += 1;
}
}
*result_count = 2;
static int c[2];
c[0] = Alice_point;
c[1] = Bob_point;
return c;
}
In Java:
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private StringTokenizer line;
private PrintWriter out;
private static final int mm = 1000000007;
public void solve() throws IOException {
int[] a = nextIntArray(3);
int[] b = nextIntArray(3);
int aa = 0;
int bb = 0;
for (int i = 0; i < 3; i++) {
if (a[i] > b[i]) aa++;
else if (a[i] < b[i]) bb++;
}
out.println(aa + " " + bb);
}
public static void main(String[] args) throws IOException {
new Solution().run(args);
}
public void run(String[] args) throws IOException {
if (args.length > 0 && "DEBUG_MODE".equals(args[0])) {
in = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
}
out = new PrintWriter(System.out);
// out = new PrintWriter("output.txt");
// int t = nextInt();
int t = 1;
for (int i = 0; i < t; i++) {
// out.print("Case #" + (i + 1) + ": ");
solve();
}
in.close();
out.flush();
out.close();
}
private int[] nextIntArray(int n) throws IOException {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = nextInt();
}
return res;
}
private long[] nextLongArray(int n) throws IOException {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = nextInt();
}
return res;
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (line == null || !line.hasMoreTokens()) {
line = new StringTokenizer(in.readLine());
}
return line.nextToken();
}
private static class Pii {
private int key;
private int value;
public Pii(int key, int value) {
this.key = key;
this.value = value;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pii pii = (Pii) o;
if (key != pii.key) return false;
return value == pii.value;
}
@Override
public int hashCode() {
int result = key;
result = 31 * result + value;
return result;
}
@Override
public String toString() {
return "Pii{" +
"key=" + key +
", value=" + value +
'}';
}
}
private static class Pair<K, V> {
private K key;
private V value;
public Pair(K key, V value) {
this.key = key;
this.value = value;
}
public K getKey() {
return key;
}
public V getValue() {
return value;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
if (key != null ? !key.equals(pair.key) : pair.key != null) return false;
return !(value != null ? !value.equals(pair.value) : pair.value != null);
}
@Override
public int hashCode() {
int result = key != null ? key.hashCode() : 0;
result = 31 * result + (value != null ? value.hashCode() : 0);
return result;
}
}
}
In Python3 :
#!/bin/python3
import sys
a0,a1,a2 = input().strip().split(' ')
a0,a1,a2 = [int(a0),int(a1),int(a2)]
b0,b1,b2 = input().strip().split(' ')
b0,b1,b2 = [int(b0),int(b1),int(b2)]
A = (a0>b0) + (a1>b1) + (a2>b2)
B = (a0<b0) + (a1<b1) + (a2<b2)
print(A, B)
```

## View More Similar Problems

## Is This a Binary Search Tree?

For the purposes of this challenge, we define a binary tree to be a binary search tree with the following ordering requirements: The data value of every node in a node's left subtree is less than the data value of that node. The data value of every node in a node's right subtree is greater than the data value of that node. Given the root node of a binary tree, can you determine if it's also a

View Solution →## Square-Ten Tree

The square-ten tree decomposition of an array is defined as follows: The lowest () level of the square-ten tree consists of single array elements in their natural order. The level (starting from ) of the square-ten tree consists of subsequent array subsegments of length in their natural order. Thus, the level contains subsegments of length , the level contains subsegments of length , the

View Solution →## Balanced Forest

Greg has a tree of nodes containing integer data. He wants to insert a node with some non-zero integer value somewhere into the tree. His goal is to be able to cut two edges and have the values of each of the three new trees sum to the same amount. This is called a balanced forest. Being frugal, the data value he inserts should be minimal. Determine the minimal amount that a new node can have to a

View Solution →## Jenny's Subtrees

Jenny loves experimenting with trees. Her favorite tree has n nodes connected by n - 1 edges, and each edge is ` unit in length. She wants to cut a subtree (i.e., a connected part of the original tree) of radius r from this tree by performing the following two steps: 1. Choose a node, x , from the tree. 2. Cut a subtree consisting of all nodes which are not further than r units from node x .

View Solution →## Tree Coordinates

We consider metric space to be a pair, , where is a set and such that the following conditions hold: where is the distance between points and . Let's define the product of two metric spaces, , to be such that: , where , . So, it follows logically that is also a metric space. We then define squared metric space, , to be the product of a metric space multiplied with itself: . For

View Solution →## Array Pairs

Consider an array of n integers, A = [ a1, a2, . . . . an] . Find and print the total number of (i , j) pairs such that ai * aj <= max(ai, ai+1, . . . aj) where i < j. Input Format The first line contains an integer, n , denoting the number of elements in the array. The second line consists of n space-separated integers describing the respective values of a1, a2 , . . . an .

View Solution →