Circular Palindromes


Problem Statement :


A palindrome is a string that reads the same from left to right as it does from right to left.

Given a string, , S of N lowercase English letters, we define a k-length rotation as cutting the first  kcharacters from the beginning of S and appending them to the end of S. For each S, there are N possible k-length rotations (where 0  <=  K  <  N ). 

See the Explanation section for examples.

Given N and S, find all N  k-length rotations of S; for each rotated string, Sk, print the maximum possible length of any palindromic substring of Sk on a new line.


Input Format

The first line contains an integer, N (the length of S ).
The second line contains a single string, S.


Constraints


1   <=   N   <=  5* 10^5
0  <=    K   <  N
S is  comprised of lower case English letters.

Output Format

There should be N  lines of output, where each line k contains an integer denoting the maximum length of any palindromic substring of rotation Sk.



Solution :



title-img


                            Solution in C :

In     C++  :







#include <algorithm>
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>

using namespace std;

#define type(x) __typeof((x).begin())
#define foreach(i, x) for(type(x) i = (x).begin(); i != (x).end(); i++)
#define hash ___hash

typedef long long ll;
typedef pair < int, int > ii;

const int inf = 1e9 + 333;
const ll linf = 1e18 + 333;

const int N = 2e6 + 5;

int n;
char s[N];
bool h[N];
int go_odd[N], go_even[N], tmp[N << 1], rad[N << 1], ans[2][N];

void manacher() {
    memset(tmp, 0, sizeof(tmp));
    memset(rad, 0, sizeof(rad));
    int m = n * 2 + 1;
    for(int i = 0; i < m; i++)
        tmp[i] = '#';
    for(int i = 0; i < n; i++)
        tmp[i * 2 + 1] = s[i + 1];
    int i = 0, j = 0;
    while(i < m) {
        while(i - j >= 0 and i + j < m and tmp[i - j] == tmp[i + j])
            j++;
        rad[i] = j;
        int k = 1;
        while(rad[i - k] < rad[i] - k) {
            rad[i + k] = rad[i - k];
            k++;
        }
        i += k;
        j = max(0, j - k);
    }
    for(int i = 1; i <= n; i++)
        go_odd[i] = rad[(i - 1) * 2 + 1] / 2;//abcba --> go_odd[3] = 3
    for(int i = 1; i <= n; i++)
        go_even[i - 1] = rad[(i - 1) * 2] / 2;//abccba --> go_even[3] = 3
}

void solveOdd(bool w) {
    int oth = 0;
    set < ii > go;
    for(int i = 1; i <= (n + 1) / 2; i++) {
        go.insert({go_odd[i], i});
    }
    for(int i = 1; i <= n; i++) {
        while(go.size()) {
            int x = go.rbegin() -> first;
            int id = go.rbegin() -> second;
            if(id < i) {
                go.erase(*go.rbegin());
                continue;
            }
            int mx = (id - i + 1) * 2 - 1;
            if(x > mx) {
                oth = max(oth, id);
                go.erase(*go.rbegin());
                continue;
            }
            break;
        }
        if(go.size())
            ans[w][i] = max(ans[w][i], go.rbegin() -> first);
        if(oth >= i)
            ans[w][i] = max(ans[w][i], (oth - i + 1) * 2 - 1);
        //printf("ans[%d] = %d oth = %d\n", i, ans[w][i]);
        int add = (n + 1) / 2 + i;
        go.insert({go_odd[add], add});
    }
}

int get(int x, int y) {
    y -= x - 1;
    return min(y, n - y) * 2;
}

void solveEven(bool w) {
    int oth = 0;
    set < ii > go;
    for(int i = 1; i <= (n + 1) / 2; i++) {
        go.insert({go_even[i], i});
    }
    for(int i = 1; i <= n; i++) {
        while(go.size()) {
            int x = go.rbegin() -> first;
            int id = go.rbegin() -> second;
            if(id < i) {
                go.erase(*go.rbegin());
                continue;
            }
            int mx = get(i, id);
            if(x > mx) {
                oth = max(oth, id);
                go.erase(*go.rbegin());
                continue;
            }
            break;
        }
        if(go.size())
            ans[w][i] = max(ans[w][i], go.rbegin() -> first);
        if(oth >= i)
            ans[w][i] = max(ans[w][i], get(i, oth));
        //printf("ans[%d] = %d\n", i, ans[w][i]);
        int add = (n + 1) / 2 + i;
        go.insert({go_even[add], add});
    }
}


int main () {
    
    scanf("%d %s", &n, s + 1);
    
    for(int i = 1; i <= n; i++)
        s[i + n] = s[i];
    
    ////////////////////////////////////
    
    n *= 2;
    manacher();
    n /= 2;
    
    for(int i = 1; i <= n + n; i++) {
        go_odd[i] *= 2;
        go_odd[i] -= 1;
        go_even[i] *= 2;
    }
    
    solveOdd(0);
    solveEven(0);
    
    ///////////////////////////////////
    
    reverse(s + 1, s + n * 2 + 1);
    
    n *= 2;
    manacher();
    n /= 2;
    
    for(int i = 1; i <= n + n; i++) {
        go_odd[i] *= 2;
        go_odd[i] -= 1;
        go_even[i] *= 2;
    }
    
    solveOdd(1);
    solveEven(1);
    
    ///////////////////////////////////
    
    printf("%d\n", max(ans[0][1], ans[1][1]));
    
    for(int i = 2; i <= n; i++) {
        printf("%d\n", max(ans[0][i], ans[1][n + 2 - i]));
    }
    
    return 0;
    
}








In    Java  :







import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;

public class E2 {
    InputStream is;
    PrintWriter out;
    String INPUT = "";
    
    void solve()
    {
        int n = ni();
        char[] s = ns(n);
        char[] s2 = new char[2*n];
        for(int i = 0;i < n;i++){
            s2[i] = s2[i+n] = s[i];
        }
        int[] pal = palindrome(s2);
//        tr(pal, pal.length, n);
        long[] es = new long[16*n];
        int p = 0;
        for(int i = 0;i < 4*n;i+=2){
            pal[i] = Math.min(pal[i], n-((n&1)^1));
            es[p++] = (long)(i/2)<<32|i;
            es[p++] = (long)(i/2+pal[i]/2)<<32|i;
            es[p++] = (long)(i/2+n-pal[i]/2-1)<<32|i;
            es[p++] = (long)(i/2+n)<<32|i;
        }
        for(int i = 1;i < 4*n;i+=2){
            pal[i] = Math.min(pal[i], n-((n&1)));
            es[p++] = (long)(i/2)<<32|i;
            es[p++] = (long)(i/2+pal[i]/2)<<32|i;
            es[p++] = (long)(i/2+n-pal[i]/2)<<32|i;
            es[p++] = (long)(i/2+n)<<32|i;
        }
        
        Arrays.sort(es, 0, p);
        MaxHeap inc = new MaxHeap(4*n+1);
        MaxHeap dec = new MaxHeap(4*n+1);
        MaxHeap flat = new MaxHeap(4*n+1);
        
        int[] st = new int[4*n];
        int q = 0;
        for(int i = 0;i < 2*n-1;i++){
            while(q < p && es[q]>>>32 <= i){
                int ind = (int)es[q];
                if(st[ind] == 0){
                    inc.add(ind, (pal[ind]&1)-2*i);
                }else if(st[ind] == 1){
                    inc.remove(ind);
                    flat.add(ind, pal[ind]);
                }else if(st[ind] == 2){
                    flat.remove(ind);
                    dec.add(ind, pal[ind]+2*i);
                }else if(st[ind] == 3){
                    dec.remove(ind);
                }
                st[ind]++;
                q++;
            }
            if(i >= n-1){
//                tr("i", i);
                int max = 0;
                if(inc.size() > 0)max = Math.max(inc.max()+2*i, max);
//                tr(max);
                if(dec.size() > 0)max = Math.max(dec.max()-2*i, max);
//                tr(max);
                max = Math.max(flat.max(), max);
//                tr(max);
                out.println(max);
            }
        }
    }
    public static class MaxHeap {
        public int[] a;
        public int[] map;
        public int[] imap;
        public int n;
        public int pos;
        public static int INF = Integer.MIN_VALUE;
        
        public MaxHeap(int m)
        {
            n = m+2;
            a = new int[n];
            map = new int[n];
            imap = new int[n];
            Arrays.fill(a, INF);
            Arrays.fill(map, -1);
            Arrays.fill(imap, -1);
            pos = 1;
        }
        
        public int add(int ind, int x)
        {
            int ret = imap[ind];
            if(imap[ind] < 0){
                a[pos] = x; map[pos] = ind; imap[ind] = pos;
                pos++;
                up(pos-1);
            }
            return ret != -1 ? a[ret] : x;
        }
        
        public int update(int ind, int x)
        {
            int ret = imap[ind];
            if(imap[ind] < 0){
                a[pos] = x; map[pos] = ind; imap[ind] = pos;
                pos++;
                up(pos-1);
            }else{
                int o = a[ret];
                a[ret] = x;
                up(ret);
                down(ret);
//                if(a[ret] < o){
//                    up(ret);
//                }else{
//                    down(ret);
//                }
            }
            return x;
        }
        
        public int remove(int ind)
        {
            if(pos == 1)return INF;
            if(imap[ind] == -1)return INF;
            
            pos--;
            int rem = imap[ind];
            int ret = a[rem];
            map[rem] = map[pos];
            imap[map[pos]] = rem;
            imap[ind] = -1;
            a[rem] = a[pos];
            a[pos] = INF;
            map[pos] = -1;
            
            up(rem);
            down(rem);
            return ret;
        }
        
        public int max() { return a[1]; }
        public int argmax() { return map[1]; }
        public int size() {    return pos-1; }
        
        private void up(int cur)
        {
            for(int c = cur, p = c>>>1;p >= 1 && a[p] < a[c];c>>>=1, p>>>=1){
                int d = a[p]; a[p] = a[c]; a[c] = d;
                int e = imap[map[p]]; imap[map[p]] = imap[map[c]]; imap[map[c]] = e;
                e = map[p]; map[p] = map[c]; map[c] = e;
            }
        }
        
        private void down(int cur)
        {
            for(int c = cur;2*c < pos;){
                int b = a[2*c] > a[2*c+1] ? 2*c : 2*c+1;
                if(a[b] > a[c]){
                    int d = a[c]; a[c] = a[b]; a[b] = d;
                    int e = imap[map[c]]; imap[map[c]] = imap[map[b]]; imap[map[b]] = e;
                    e = map[c]; map[c] = map[b]; map[b] = e;
                    c = b;
                }else{
                    break;
                }
            }
        }
    }
    
    public static int[] palindrome(char[] str)
    {
        int n = str.length;
        int[] r = new int[2*n];
        int k = 0;
        for(int i = 0, j = 0;i < 2*n;i += k, j = Math.max(j-k, 0)){
            // normally
            while(i-j >= 0 && i+j+1 < 2*n && str[(i-j)/2] == str[(i+j+1)/2])j++;
            r[i] = j;
            
            // skip based on the theorem
            for(k = 1;i-k >= 0 && r[i]-k >= 0 && r[i-k] != r[i]-k;k++){
                r[i+k] = Math.min(r[i-k], r[i]-k);
            }
        }
        return r;
    }

    
    void run() throws Exception
    {

is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
        out = new PrintWriter(System.out);
        
        long s = System.currentTimeMillis();
        solve();
        out.flush();
        if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
    }
    
    public static void main(String[] args) throws Exception { new E2().run(); }
    
    private byte[] inbuf = new byte[1024];
    private int lenbuf = 0, ptrbuf = 0;
    
    private int readByte()
    {
        if(lenbuf == -1)throw new InputMismatchException();
        if(ptrbuf >= lenbuf){
            ptrbuf = 0;
            try { lenbuf = is.read(inbuf); }
 catch (IOException e) { throw new InputMismatchException(); }
            if(lenbuf <= 0)return -1;
        }
        return inbuf[ptrbuf++];
    }
    
    private boolean isSpaceChar(int c) 
{ return !(c >= 33 && c <= 126); }
    private int skip()
{ int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
    
    private double nd() { return Double.parseDouble(ns()); }
    private char nc() { return (char)skip(); }
    
    private String ns()
    {
        int b = skip();
        StringBuilder sb = new StringBuilder();
        while(!(isSpaceChar(b)))
{ // when nextLine, (isSpaceChar(b) && b != ' ')
            sb.appendCodePoint(b);
            b = readByte();
        }
        return sb.toString();
    }
    
    private char[] ns(int n)
    {
        char[] buf = new char[n];
        int b = skip(), p = 0;
        while(p < n && !(isSpaceChar(b))){
            buf[p++] = (char)b;
            b = readByte();
        }
        return n == p ? buf : Arrays.copyOf(buf, p);
    }
    
    private char[][] nm(int n, int m)
    {
        char[][] map = new char[n][];
        for(int i = 0;i < n;i++)map[i] = ns(m);
        return map;
    }
    
    private int[] na(int n)
    {
        int[] a = new int[n];
        for(int i = 0;i < n;i++)a[i] = ni();
        return a;
    }
    
    private int ni()
    {
        int num = 0, b;
        boolean minus = false;
        while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
        if(b == '-'){
            minus = true;
            b = readByte();
        }
        
        while(true){
            if(b >= '0' && b <= '9'){
                num = num * 10 + (b - '0');
            }else{
                return minus ? -num : num;
            }
            b = readByte();
        }
    }
    
    private long nl()
    {
        long num = 0;
        int b;
        boolean minus = false;

 while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
        if(b == '-'){
            minus = true;
            b = readByte();
        }
        
        while(true){
            if(b >= '0' && b <= '9'){
                num = num * 10 + (b - '0');
            }else{
                return minus ? -num : num;
            }
            b = readByte();
        }
    }
    
    private static void tr(Object... o) 
{ System.out.println(Arrays.deepToString(o)); }
}









In   C  :






#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void solve(char *str,int *a);
void init( int n );
void range_increment( int i, int j, int val );
int query( int i );
int max(int x,int y);
void update(int x,int y,int z);
void sort_a2(int*a,int*b,int size);
void merge2(int*a,int*left_a,int*right_a,int*b,int*left_b,int*right_b,int left_size, int right_size);
char str[1000001]={0};
int N,NN,a[2000004],tree[2000000],ans[500000],b[500000],c[500000];

int main(){
  int i,j;
  scanf("%d%s",&NN,str);
  strncpy(str+NN,str,NN);
  solve(str,a);
  init(NN);
  for(i=0;i<4*NN;i++)
    if(a[i])
      if(i%2)
        update(i/2-a[i]/2,i/2+a[i]/2,a[i]);
      else
        update(i/2-a[i]/2,i/2+a[i]/2-1,a[i]);
  for(i=0;i<NN;i++){
    ans[i]=query(i);
    b[i]=ans[i];
    c[i]=i;
  }
  sort_a2(b,c,NN);
  for(i=NN;i>=0;i--){
    for(j=c[i];1;j=(j-1+NN)%NN)
      if(ans[j]-ans[(j-1+NN)%NN]>2)
        ans[(j-1+NN)%NN]=ans[j]-2;
      else
        break;
    for(j=c[i];1;j=(j+1)%NN)
      if(ans[j]-ans[(j+1)%NN]>2)
        ans[(j+1)%NN]=ans[j]-2;
      else
        break;
  }
  for(i=0;i<NN;i++)
    printf("%d\n",ans[i]);
  return 0;
}
void solve(char *str,int *a){
  char *p;
  int len,R,Ri,i,j,mi;
  len=strlen(str);
  p=(char*)malloc(2*(len+1)*sizeof(char));
  for(i=0;i<len;i++){
    p[2*i]='#';
    p[2*i+1]=str[i];
  }
  p[2*i]='#';
  p[2*i+1]=0;
  a[0]=R=Ri=0;
  for(i=1;i<=len*2;i++)
    if(i>=R){
      if(p[i]!='#')
        a[i]=1;
      else
        a[i]=0;
      for(j=i+1;1;j++)
        if(j<=2*len && 2*i-j>=0 && p[j]==p[2*i-j]){
          if(p[j]!='#')
            a[i]+=2;
        }
        else{
          Ri=i;
          R=j-1;
          break;
        }
    }
    else{
      mi=2*Ri-i;
      if(i+a[mi]>=R || mi==a[mi]){
        a[i]=R-i;
        for(j=R+1;1;j++)
          if(j<=2*len && 2*i-j>=0 && p[j]==p[2*i-j]){
            if(p[j]!='#')
              a[i]+=2;
          }
          else{
            Ri=i;
            R=j-1;
            break;
          }
      }
      else
        a[i]=a[mi];
    }
  free(p);
  return;
}
void init( int n ){
  N = 1;
  while( N < n ) N *= 2;
  int i;
  for( i = 1; i < N + n; i++ ) tree[i] = 0;
}
void range_increment( int i, int j, int val ){
  for( i += N, j += N; i <= j; i = ( i + 1 ) / 2, j = ( j - 1 ) / 2 )
  {
    if( i % 2 == 1 ) tree[i] = max(tree[i],val);
    if( j % 2 == 0 ) tree[j] = max(tree[j],val);
  }
}
int query( int i ){
  int ans = 0,j;
  for( j = i + N; j; j /= 2 ) ans = max(ans,tree[j]);
  return ans;
}
int max(int x,int y){
  return (x>y)?x:y;
}
void update(int x,int y,int z){
  if(z>NN){
    int m=x+z/2;
    if(z%2)
      if(NN%2)
        update(m-NN/2,m+NN/2,NN);
      else
        update(m-NN/2+1,m+NN/2-1,NN-1);
    else
      if(NN%2)
        update(m-NN/2,m+NN/2-1,NN-1);
      else
        update(m-NN/2,m+NN/2-1,NN);
  }
  if(y<NN){
    range_increment(0,x,z);
    range_increment(y+1,NN-1,z);
  }
  else
    range_increment(y-NN+1,x,z);
  return;
}
void sort_a2(int*a,int*b,int size){
  if (size < 2)
    return;
  int m = (size+1)/2,i;
  int*left_a,*left_b,*right_a,*right_b;
  left_a=(int*)malloc(m*sizeof(int));
  right_a=(int*)malloc((size-m)*sizeof(int));
  left_b=(int*)malloc(m*sizeof(int));
  right_b=(int*)malloc((size-m)*sizeof(int));
  for(i=0;i<m;i++){
    left_a[i]=a[i];
    left_b[i]=b[i];
  }
  for(i=0;i<size-m;i++){
    right_a[i]=a[i+m];
    right_b[i]=b[i+m];
  }
  sort_a2(left_a,left_b,m);
  sort_a2(right_a,right_b,size-m);
  merge2(a,left_a,right_a,b,left_b,right_b,m,size-m);
  free(left_a);
  free(right_a);
  free(left_b);
  free(right_b);
  return;
}
void merge2(int*a,int*left_a,int*right_a,int*b,int*left_b,int*right_b,int left_size, int right_size){
  int i = 0, j = 0;
  while (i < left_size|| j < right_size) {
    if (i == left_size) {
      a[i+j] = right_a[j];
      b[i+j] = right_b[j];
      j++;
    } else if (j == right_size) {
      a[i+j] = left_a[i];
      b[i+j] = left_b[i];
      i++;
    } else if (left_a[i] <= right_a[j]) {
      a[i+j] = left_a[i];
      b[i+j] = left_b[i];
      i++;
    } else {
      a[i+j] = right_a[j];
      b[i+j] = right_b[j];
      j++;
    }
  }
  return;
}
                        








View More Similar Problems

Waiter

You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the

View Solution →

Queue using Two Stacks

A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que

View Solution →

Castle on the Grid

You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):

View Solution →

Down to Zero II

You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.

View Solution →

Truck Tour

Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr

View Solution →

Queries with Fixed Length

Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon

View Solution →