Build a String
Problem Statement :
Greg wants to build a string, S of length N. Starting with an empty string, he can perform 2 operations: 1. Add a character to the end of S for A dollars. 2. Copy any substring of S, and then add it to the end of S for B dollars. Calculate minimum amount of money Greg needs to build S. Input Format The first line contains number of testcases T. The 2 x T subsequent lines each describe a test case over 2 lines: The first contains 3 space-separated integers, , N , A and B, respectively. The second contains S (the string Greg wishes to build). Constraints 1 <= T <= 3 1 <= N <= 3 x 10^4 1 <= A, B <= 10000 S is composed of lowercase letters only. Output Format On a single line for each test case, print the minimum cost (as an integer) to build S.
Solution :
Solution in C :
In C++ :
#include <cstdio>
#include <algorithm>
using namespace std;
const int inf=1000000000;
struct suffix
{
int s1,s2,poz;
bool operator <(const suffix &aux) const
{
if(s1==aux.s1) return s2<aux.s2;
else return s1<aux.s1;
}
bool operator ==(const suffix &aux) const
{
return s1==aux.s1 && s2==aux.s2;
}
}s[30010];
struct arbint
{
int minn,lazy;
}arb[200010];
int p[17][30010],logg[30010],pas[30010];
int poz[30010],st[30010],dr[30010],rmq[17][30010],n,sol;
char sir[30010];
int LCP(int x,int y)
{
int rez=0;
for(int i=logg[n];i>=0 && x<=n && y<=n;i--)
if(p[i][x]==p[i][y]) {rez+=1<<i;x+=1<<i;y+=1<<i;}
return rez;
}
void arbint_init(int nod,int st,int dr)
{
arb[nod].minn=arb[nod].lazy=inf;
if(st==dr) return;
int mid=(st+dr)/2;
arbint_init(nod*2,st,mid);
arbint_init(nod*2+1,mid+1,dr);
}
void update(int nod,int st,int dr)
{
arb[nod].minn=min(arb[nod].minn,arb[nod].lazy);
if(st<dr)
{
arb[nod*2].lazy=min(arb[nod*2].lazy,arb[nod].lazy);
arb[nod*2+1].lazy=min(arb[nod*2+1].lazy,arb[nod].lazy);
}
}
void arbint_update(int nod,int st,int dr,int left,int right,int val)
{
if(left<=st && dr<=right)
{
arb[nod].lazy=min(arb[nod].lazy,val);
update(nod,st,dr);
return;
}
update(nod,st,dr);
int mid=(st+dr)/2;
if(left<=mid) arbint_update(nod*2,st,mid,left,right,val);
else update(nod*2,st,mid);
if(mid<right) arbint_update(nod*2+1,mid+1,dr,left,right,val);
else update(nod*2+1,mid+1,dr);
arb[nod].minn=min(arb[nod*2].minn,arb[nod*2+1].minn);
}
void arbint_query(int nod,int st,int dr,int poz)
{
update(nod,st,dr);
if(st==dr)
{
sol=arb[nod].minn;
return;
}
int mid=(st+dr)/2;
if(poz<=mid) arbint_query(nod*2,st,mid,poz);
else arbint_query(nod*2+1,mid+1,dr,poz);
}
int get_min(int x,int y)
{
int lim=logg[y-x+1];
return min(rmq[lim][x],rmq[lim][y-(1<<lim)+1]);
}
int main()
{
//freopen("file.in", "r", stdin);
//freopen("file.out", "w", stdout);
int t;
for(scanf("%d",&t);t;t--)
{
int cost1,cost2;
scanf("%d%d%d\n%s",&n,&cost1,&cost2,sir+1);
for(int i=2;i<=n;i++) logg[i]=logg[i/2]+1;
for(int i=1;i<=n;i++)
{
p[0][i]=sir[i];
s[i].poz=i;
}
for(int i=1;i<=logg[n]+1;i++)
{
for(int j=1;j<=n;j++)
{
s[j].s1=p[i-1][s[j].poz];
if(s[j].poz+(1<<(i-1))<=n) s[j].s2=p[i-1][s[j].poz+(1<<(i-1))];
else s[j].s2=-1;
}
sort(s+1,s+n+1);
for(int j=1;j<=n;j++)
if(j>1 && s[j]==s[j-1]) p[i][s[j].poz]=p[i][s[j-1].poz];
else p[i][s[j].poz]=j;
}
for(int i=1;i<=n;i++) rmq[0][i]=s[i].poz;
for(int i=1;i<=logg[n];i++)
{
int lim=n-(1<<(i-1))+1;
for(int j=1;j<=lim;j++) rmq[i][j]=min(rmq[i-1][j],rmq[i-1][j+(1<<(i-1))]);
}
for(int i=1;i<=n;i++)
{
int st=1,dr=min(n-s[i].poz+1,s[i].poz-1);
while(st<=dr)
{
int mid=(st+dr)/2,ok=0;
int l=1,r=i-1;
while(l<=r)
{
int m=(l+r)/2;
if(get_min(m,i)<=s[i].poz-mid) l=m+1;
else r=m-1;
}
int a=r;
l=i+1;r=n;
while(l<=r)
{
int m=(l+r)/2;
if(get_min(i,m)<=s[i].poz-mid) r=m-1;
else l=m+1;
}
int b=l;
if(1<=a && LCP(s[a].poz,s[i].poz)>=mid) ok=1;
if(b<=n && LCP(s[b].poz,s[i].poz)>=mid) ok=1;
if(ok) st=mid+1;
else dr=mid-1;
}
pas[s[i].poz]=dr;
}
arbint_init(1,1,n);
arbint_update(1,1,n,1,1,cost1);
for(int i=1;i<n;i++)
{
arbint_query(1,1,n,i);
if(pas[i+1]) arbint_update(1,1,n,i+1,i+pas[i+1],sol+cost2);
arbint_update(1,1,n,i+1,i+1,sol+cost1);
}
arbint_query(1,1,n,n);
printf("%d\n",sol);
}
return 0;
}
In Java :
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
for(int t=0;t<T;t++){
int N = sc.nextInt();
int A = sc.nextInt();
int B = sc.nextInt();
String S = sc.next();
System.out.println( buildStringCost(N,A,B,S) );
}
}
public static int buildStringCost(int N, int A, int B, String S){
int[] dp = new int[N];
dp[0] = A;
int lastL = 0;
for(int k=1;k<N;++k){
dp[k] = dp[k-1]+A;
int L = lastL+1;
while(L>0){
String cur = S.substring(k-L+1, k+1);
int idx = S.substring(0, k-L+1).indexOf(cur);
if( -1==idx )
L--;
else{
dp[k] = Math.min(dp[k], dp[k-L]+B);
break;
}
}
lastL = L;
}
return dp[N-1];
}
}
In C :
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
char s[30001];
int sublens[30001] = { 0 };
void longestsubstr(int pos) {
int i, max = 0;
for (i = 0; i < pos; i++) {
if (s[i] != s[pos]) sublens[i] = 0;
else {
sublens[i] = sublens[i+1] + 1;
if (i + sublens[i] > pos) sublens[i] = pos - i;
if (sublens[i] > max) max = sublens[i];
}
}
sublens[pos] = max;
}
int main() {
int t, t1;
scanf("%d", &t);
for (t1 = 0; t1 < t; t1++) {
int n, a, b, sublen, i, j, temp;
scanf("%d %d %d", &n, &a, &b);
scanf("%s", s);
int ar[30001];
for (i = 0; i < n; i++) {
ar[i] = 0x7FFFFFFF;
sublens[i] = 0;
}
for (i = n - 1; i >= 1; i--) longestsubstr(i);
ar[0] = a;
for (i = 1; i < n; i++) {
if (ar[i-1] + a < ar[i]) ar[i] = ar[i-1] + a;
sublen = sublens[i];
temp = ar[i-1] + b;
for (j = 0; j < sublen; j++) if (temp < ar[i+j]) ar[i+j] = temp;
}
printf("%d\n", ar[n-1]);
}
return 0;
}
In Python3 :
rep = int(input())
for r in range(rep):
l, a, b = map(int, input().split(' '))
s = input().strip()
i = 1
cost = 0
cost = [float('inf')] * (l + 1)
cost[0] = 0
k = 0
while i <= l: # i is the number of char finished, s[i-1] finished
# find the maximun substring
j = max(i, k)
while j<=l and (s[i-1:j] in s[:i-1]):
j += 1
# s[i-1:j-1] in s
if j-1 != i:
cost[j-1] = min(cost[i-1] + b, cost[j-1])
k = j
cost[i] = min(cost[i-1] + a, cost[i])
#print(cost)
#print(s[i], a)
i += 1
print(cost[-1])
View More Similar Problems
Waiter
You are a waiter at a party. There is a pile of numbered plates. Create an empty answers array. At each iteration, i, remove each plate from the top of the stack in order. Determine if the number on the plate is evenly divisible ith the prime number. If it is, stack it in pile Bi. Otherwise, stack it in stack Ai. Store the values Bi in from top to bottom in answers. In the next iteration, do the
View Solution →Queue using Two Stacks
A queue is an abstract data type that maintains the order in which elements were added to it, allowing the oldest elements to be removed from the front and new elements to be added to the rear. This is called a First-In-First-Out (FIFO) data structure because the first element added to the queue (i.e., the one that has been waiting the longest) is always the first one to be removed. A basic que
View Solution →Castle on the Grid
You are given a square grid with some cells open (.) and some blocked (X). Your playing piece can move along any row or column until it reaches the edge of the grid or a blocked cell. Given a grid, a start and a goal, determine the minmum number of moves to get to the goal. Function Description Complete the minimumMoves function in the editor. minimumMoves has the following parameter(s):
View Solution →Down to Zero II
You are given Q queries. Each query consists of a single number N. You can perform any of the 2 operations N on in each move: 1: If we take 2 integers a and b where , N = a * b , then we can change N = max( a, b ) 2: Decrease the value of N by 1. Determine the minimum number of moves required to reduce the value of N to 0. Input Format The first line contains the integer Q.
View Solution →Truck Tour
Suppose there is a circle. There are N petrol pumps on that circle. Petrol pumps are numbered 0 to (N-1) (both inclusive). You have two pieces of information corresponding to each of the petrol pump: (1) the amount of petrol that particular petrol pump will give, and (2) the distance from that petrol pump to the next petrol pump. Initially, you have a tank of infinite capacity carrying no petr
View Solution →Queries with Fixed Length
Consider an -integer sequence, . We perform a query on by using an integer, , to calculate the result of the following expression: In other words, if we let , then you need to calculate . Given and queries, return a list of answers to each query. Example The first query uses all of the subarrays of length : . The maxima of the subarrays are . The minimum of these is . The secon
View Solution →