Boxes through a Tunnel C
Problem Statement :
You are transporting some boxes through a tunnel, where each box is a parallelepiped, and is characterized by its length, width and height. The height of the tunnel 41 feet and the width can be assumed to be infinite. A box can be carried through the tunnel only if its height is strictly less than the tunnel's height. Find the volume of each box that can be successfully transported to the other end of the tunnel. Note: Boxes cannot be rotated. Input Format The first line contains a single integer n, denoting the number of boxes. n lines follow with three integers on each separated by single spaces length(i) , width(i) and height(i) which are length, width and height in feet of the i-th box. Constraints 1 <= n <= 100 1 <= length(i) , width(i), height(i) <= 100 Output Format For every box from the input which has a height lesser than 41 feet, print its volume in a separate line.
Solution :
Solution in C :
#include <stdio.h>
struct Box
{
int length, width, height;
};
int volume(struct Box box)
{
return box.length*box.width*box.height;
}
int lower(struct Box box, int maxHeight)
{
return box.height < maxHeight;
}
int main()
{
int n;
scanf("%d", &n);
struct Box boxes[100];
for (int i = 0; i < n; i++)
scanf("%d%d%d", &boxes[i].length, &boxes[i].width, &boxes[i].height);
for (int i = 0; i < n; i++)
if (lower(boxes[i], 41))
printf("%d\n", volume(boxes[i]));
return 0;
}
View More Similar Problems
Print the Elements of a Linked List
This is an to practice traversing a linked list. Given a pointer to the head node of a linked list, print each node's data element, one per line. If the head pointer is null (indicating the list is empty), there is nothing to print. Function Description: Complete the printLinkedList function in the editor below. printLinkedList has the following parameter(s): 1.SinglyLinkedListNode
View Solution →Insert a Node at the Tail of a Linked List
You are given the pointer to the head node of a linked list and an integer to add to the list. Create a new node with the given integer. Insert this node at the tail of the linked list and return the head node of the linked list formed after inserting this new node. The given head pointer may be null, meaning that the initial list is empty. Input Format: You have to complete the SinglyLink
View Solution →Insert a Node at the head of a Linked List
Given a pointer to the head of a linked list, insert a new node before the head. The next value in the new node should point to head and the data value should be replaced with a given value. Return a reference to the new head of the list. The head pointer given may be null meaning that the initial list is empty. Function Description: Complete the function insertNodeAtHead in the editor below
View Solution →Insert a node at a specific position in a linked list
Given the pointer to the head node of a linked list and an integer to insert at a certain position, create a new node with the given integer as its data attribute, insert this node at the desired position and return the head node. A position of 0 indicates head, a position of 1 indicates one node away from the head and so on. The head pointer given may be null meaning that the initial list is e
View Solution →Delete a Node
Delete the node at a given position in a linked list and return a reference to the head node. The head is at position 0. The list may be empty after you delete the node. In that case, return a null value. Example: list=0->1->2->3 position=2 After removing the node at position 2, list'= 0->1->-3. Function Description: Complete the deleteNode function in the editor below. deleteNo
View Solution →Print in Reverse
Given a pointer to the head of a singly-linked list, print each data value from the reversed list. If the given list is empty, do not print anything. Example head* refers to the linked list with data values 1->2->3->Null Print the following: 3 2 1 Function Description: Complete the reversePrint function in the editor below. reversePrint has the following parameters: Sing
View Solution →